Skip to main content

Clinical Limitations of the Biodegradable Implants Used in Arthroscopy

  • Reference work entry
  • First Online:
Handbook of Bioceramics and Biocomposites

Abstract

Arthroscopy is considered a revolution in joint surgery, and it had an explosive development during the last years. Biodegradable implants were developed in the effort to avoid the complications related to classic metallic implants used during intra-articular procedures. Limitations and complications related to these implants are documented.

Most frequently performed arthroscopic procedures are in the knee joint: meniscus suture, meniscal replacement and transplantation, anterior cruciate ligament reconstruction, cartilage repair, etc. Every one of these procedures had gone thru a long improvement process of the surgical technique and of the implants used during each of them. That is why we talk today about several generations of biodegradable implants in this area. Selecting the best devices and having in mind all complications related to their use, we may find a way to improve our clinical practice and to develop better implants.

The shoulder is the second joint where the arthroscopy is most used. Shoulder instabilities and rotator cuff pathology are addressed arthroscopically, and that is why for these two procedures a lot of biodegradable implants were developed and used during the last 20 years. Reviewing their history and long-term results is helpful in making the best choice during surgery and continues the improvements in developing the implants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kim HS, Seon YK, Jo AR (2013) Current trends in anterior cruciate ligament reconstruction. Knee Surg Relat Res 25(4):165–173

    Article  Google Scholar 

  2. Pinczewski LA, Clingeleffer AJ, Otto DD, Bonar SF, Corry S (1997) Integration of hamstring tendon graft with bone in reconstruction of the anterior cruciate ligament. Arthroscopy 13(5):641–643

    Article  Google Scholar 

  3. Shimizu T, Takahashi T, Wada Y, Tanaka M, Morisawa Y, Yamamoto H (1999) Regeneration process of mechanoreceptors in the reconstructed anterior cruciate ligament. Arch Orthop Trauma Surg 119(7–8):405–409

    Article  Google Scholar 

  4. Schatzmann L, Brunner P, Stäubli HU (1998) Effect of cyclic preconditioning on the tensile properties of human quadriceps tendons and patellar ligaments. Knee Surg Sports Traumatol Arthrosc 6(Suppl 1):S56–S61

    Article  Google Scholar 

  5. Cooper DE, Deng XH, Burstein AL, Warren RF (1993) The strength of the central third patellar tendon graft. A biomechanical study. Am J Sports Med 21(6):818–823

    Article  Google Scholar 

  6. Brown CH Jr, Hecker AT, Hipp JA, Myers ER, Hayes WC (1993) The biomechanics of interference screw fixation of patellar tendon anterior cruciate ligament grafts. Am J Sports Med 21(6):880–886

    Article  Google Scholar 

  7. Weiller A, Hofmann RP, Siepe CJ (2000) The influence of screw geometry on hamstring tendon interference fixation. Am J Sports Med 28:356–359

    Google Scholar 

  8. Kohn JC, Pienkowski D, Sterage E (2000) Interference screw fixation strength of a quadrupled hamstring tendon graft is directly related to bone mineral density and insertion torque. Am J Sports Med 28:705–710

    Google Scholar 

  9. Kohn D, Rose C (1994) Primary stability of interference screw fixation: influence of screw diameter and insertion torque. Am J Sports Med 22:334–338

    Article  Google Scholar 

  10. Konan S, Haddad FS (2009) A clinical review of bioabsorbable interference screws and their adverse effects in anterior cruciate ligament reconstruction surgery. Knee 16:6–13

    Article  Google Scholar 

  11. Appelt A, Baier M (2007) Recurrent locking of the knee joint caused by intraarticular migration of bioabsorbable tibial interference screw after arthroscopic ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 15(4):378–380

    Article  Google Scholar 

  12. Sharma V, Curtis C, Mitcheli C (2008) Extraarticular extraosseous migration of a bioabsorbable femoral screw after ACL reconstruction. Orthopedics 31(10):pii

    Google Scholar 

  13. Herrera A, Martínez F, Iglesias D, Cegoñino J, Ibarz E, Gracia L (2010) Fixation strength of biocomposite wedge interference screw in ACL reconstruction: effect of screw length and tunnel/screw ratio. A controlled laboratory study. BMC Musculoskelet Disord 11:139. doi:10.1186/1471-2474-11-139

    Article  Google Scholar 

  14. Eguchi A, Ochi M, Adachi N, Deie M, Nakamae A, Usman MA (2014) Mechanical properties of suspensory fixation devices for anterior cruciate ligament reconstruction: comparison of the fixed-length loop device versus the adjustable-length loop device. Knee 21(3):743–748

    Article  Google Scholar 

  15. Harilarinen A, Sanden J, Janssen KA (2005) Cross-pin femoral fixation versus metal interference screw fixation in ACL reconstruction with hamstring tendon: results of a controlled prospective study with 2-years follow-up. Arthroscopy 21:25–33

    Article  Google Scholar 

  16. John AH, Jill T (2008) Callaghan: polymer-HA versus polymer interference screw in ACL reconstruction in large animal model. Knee Surg Sports Traumatol Arthrosc 16:655–660

    Article  Google Scholar 

  17. Studler U, White LM, Naraghu AM (2010) ACL reconstruction using bioabsorbable cross-pin: MR-imaging at follow-up, comparison with clinical findings. Radiology 255(1):108–116

    Article  Google Scholar 

  18. Hapa O, Barber FA (2009) ACL fixation devices. Sports Med Arthrosc 17(4):217–223

    Article  Google Scholar 

  19. Cossey AJ, Kalairajah J, Morcom R, Springgins AJ (2006) MRI evaluation of biodegradable interference fixation used in ACL reconstruction. Arthroscopy 22(2):199–204

    Article  Google Scholar 

  20. Choi NH, Lu JH, Victoroff BN (2007) Do broken cross-pin compromise stability after ACL reconstruction with hamstring tendons? Arthroscopy 23(12):1334–1340

    Article  Google Scholar 

  21. Verdonk P, Espregueira J, Monllau JC (2013) Meniscal transplantation. ISAKOS, Toronto

    Book  Google Scholar 

  22. Becker R, Wirz D, Wolf C, Göpfert B, Nebelung W, Friederich N (2005) Measurement of meniscofemoral contact pressure after repair of bucket-handle tears with biodegradable implants. Arch Orthop Trauma Surg 125(4):254–260

    Article  Google Scholar 

  23. Marinescu R, Laptoiu D, Negrusoiu O (2003) Outside-in meniscus suture technique-5 year’s follow-up. Knee Surg Sports Traumatol Arthrosc 11(3):167–172

    Google Scholar 

  24. Espejo-Baena A, Golano P, Meschian S, Garcia-Herrera JM, Serrano Jiménez JM (2007) Complications in medial meniscus suture: a cadaveric study. Knee Surg Sports Traumatol Arthrosc 15(6):811–816

    Article  Google Scholar 

  25. Liao CP, Lee H-M, Shih J-T, Hung S-T (2013) Common peroneal nerve palsy as a postoperative complication in lateral meniscus repair. Form J Musculoskeletal Disord 4(2):48–50

    Article  Google Scholar 

  26. Kang HJ, Chun CH, Kim SH, Kim KM (2012) A ganglion cyst generated by non-absorbable meniscal repair suture material. Orthop Traumatol Surg Res 98(5):608–612

    Article  Google Scholar 

  27. Gwathmey FW Jr, Golish SR, Diduch DR (2012) Complications in brief: meniscus repair. Clin Orthop Relat Res 470(7):2059–2066

    Article  Google Scholar 

  28. Walgrave S, Claus S, Bellemans J (2013) High incidence of intraoperative anchorage failure in Fast-Fix all inside meniscal suturing device. Acta Orthop Belg 79:689–695

    Google Scholar 

  29. Jones HP, Lemos MJ, Wilk RM, Smiley PM, Gutierrez R, Schepsis AA (2002) Two-year follow-up of meniscal repair using a bioabsorbable arrow. Arthroscopy 18(1):64–69

    Article  Google Scholar 

  30. Hantes ME, Zachos VC, Varitimidis SE, Dailiana ZH, Karachalios T, Malizos KN (2006) Arthroscopic meniscal repair: a comparative study between three different surgical techniques. Knee Surg Sports Traumatol Arthrosc 14(12):1232–1237

    Article  Google Scholar 

  31. Tienen TG, Heijkants RG, Buma P, De Groot JH, Pennings AJ, Veth RP (2003) A porous polymer scaffold for meniscal lesion repair - a study in dogs. Biomaterials 24(14):2541–2548

    Article  Google Scholar 

  32. Bulgheroni P, Murena L, Ratti C, Bulgheroni E, Ronga M, Cherubino P (2010) Follow-up of collagen meniscus implant patients: clinical, radiological, and magnetic resonance imaging results at 5 years. Knee 17(3):224–229

    Article  Google Scholar 

  33. Rodkey WG, DeHaven KE, Montgomery WH 3rd, Baker CL Jr, Beck CL Jr, Hormel SE, Steadman JR, Cole BJ, Briggs KK (2008) Comparison of the collagen meniscus implant with partial meniscectomy. A prospective randomized trial. J Bone Joint Surg Am 90(7):1413–1426

    Article  Google Scholar 

  34. Grassi A, Zaffagnini S, Marcheggiani Muccioli GM, Benzi A, Marcacci M (2014) Clinical outcomes and complications of a collagen meniscus implant: a systematic review. Int Orthop 38(9):1945–1953

    Article  Google Scholar 

  35. Monllau JC, Gelber PE, Abat F, Pelfort X, Abad R, Hinarejos P, Tey M (2011) Outcome after partial medial meniscus substitution with the collagen meniscal implant at a minimum of 10 years’ follow-up. Arthroscopy 27(7):933–943

    Article  Google Scholar 

  36. Bouyarmane H, Beaufils P, Pujol N, Bellemans J, Roberts S, Spalding T, Zaffagnini S, Marcacci M, Verdonk P, Womack M, Verdonk R (2014) Polyurethane scaffold in lateral meniscus segmental defects: clinical outcomes at 24 months follow-up. Orthop Traumatol Surg Res 100(1):153–157

    Article  Google Scholar 

  37. Lanza R, Langer R, Vacant J (2013) Principles of tissue engineering, 4th edn. Academic

    Google Scholar 

  38. Kokkinakis M, Kafchitsas K, Rajeev A, Mortier J (2008) Is MRI useful in the early follow-up after autologous osteochondral transplantation? Acta Orthop Belg 74(5):636–642

    Google Scholar 

  39. Hangody L, Ráthonyi GK, Duska Z, Vásárhelyi G, Füles P, Módis L (2004) Autologous osteochondral mosaicplasty. Surgical technique. J Bone Joint Surg Am 86-A(Suppl 1):65–72

    Google Scholar 

  40. Ochi M, Adachi N, Nobuto H, Yanada S, Ito Y, Agung M (2004) Articular cartilage repair using tissue engineering technique-novel approach with minimally invasive procedure. Artif Organs 28(1):28–32

    Article  Google Scholar 

  41. Gooding CR, Bartlett W, Bentley G, Skinner JA, Carrington R, Flanagan A (2006) A prospective, randomised study comparing two techniques of autologous chondrocyte implantation for osteochondral defects in the knee: Periosteum covered versus type I/III collagen covered. Knee 13(3):203–210

    Article  Google Scholar 

  42. Feng Zhao, Wei He, Yueling Yan et al (2014) The application of polysaccharide biocomposites to repair cartilage defects. Int J Polym Sci 2014:9 p. Article ID 654597

    Google Scholar 

  43. Barber FA, Herbert MA, McGarry JE, Barber CA (2008) Insertion force of articular cartilage transplantation systems. J Knee Surg 21(3):200–204

    Article  Google Scholar 

  44. Kon E, Delcogliano M, Filardo G, Busacca M, Di Martino A, Marcacci M (2011) Novel nanocomposite multilayered biomaterial for osteochondral regeneration: a pilot clinical trial. Am J Sports Med 39(6):1180–1190

    Article  Google Scholar 

  45. Filardo G, Drobnic M, Perdisa F, Kon E, Hribernik M, Marcacci M (2014) Fibrin glue improves osteochondral scaffold fixation: study on the human cadaveric knee exposed to continuous passive motion. Osteoarthritis Cartilage 22(4):557–565

    Article  Google Scholar 

  46. Speer KP, Warren RF (1993) Arthroscopic shoulder stabilization. A role for biodegradable materials. Clin Orthop Relat Res 291:67–74

    Google Scholar 

  47. Nho SJ, Provencher MT, Seroyer ST, Romeo AA (2009) Bioabsorbable anchors in glenohumeral shoulder surgery. Arthroscopy 25(7):788–793

    Article  Google Scholar 

  48. Cobaleda Aristizabal AF, Sanders EJ, Barber FA (2014) Adverse events associated with biodegradable lactide-containing suture anchors. Arthroscopy 30(5):555–556

    Article  Google Scholar 

  49. Milewski MD, Diduch DR, Hart JM, Tompkins M, Ma SY, Gaskin CM (2012) Bone replacement of fast absorbing biocomposite anchors in arthroscopic shoulder labral repair. Am J Sports Med 40(6):1392–1401

    Article  Google Scholar 

  50. Barber FA, Herbert MA, Beavis RC, Barrera Oro F (2008) Suture anchor materials, eyelets, and designs: update 2008. Arthroscopy 24:859–867

    Article  Google Scholar 

  51. Boden RA, Burgess E, Enion D, Srinivasan MS (2009) Use of bioabsorbable knotless suture anchors and associated accelerated shoulder arthropathy: report of 3 cases. Am J Sports Med 37(7):1429–1433

    Article  Google Scholar 

  52. Athwal GS, Shridharani SM, O'Driscoll SW (2006) Osteolysis and arthropathy of the shoulder after use of bioabsorbable knotless suture anchors. A report of four cases. J Bone Joint Surg Am 88(8):1840–1845

    Article  Google Scholar 

  53. Ejerhed L, Kartus J, Funck E, Köhler K, Sernert N, Karlsson J (2000) A clinical and radiographic comparison of absorbable and non-absorbable suture anchors in open shoulder stabilisation. Knee Surg Sports Traumatol Arthrosc 8(6):349–355

    Article  Google Scholar 

  54. Strauss E, Frank D, Kubiak E, Kummer F, Rokito A (2009) The effect of the angle of suture anchor insertion on fixation failure at the tendon-suture interface after rotator cuff repair: deadman’s angle revisited. Arthroscopy 25(6):597–602

    Article  Google Scholar 

  55. Cole BJ, ElAttrache NS, Anbari A (2007) Arthroscopic rotator cuff repairs: an anatomic and biomechanical rationale for different suture-anchor repair configurations. Arthroscopy 23(6):662–669

    Article  Google Scholar 

  56. Costic RS, Brucker PU, Smolinski PJ, Gilbertson LG, Rodosky MW (2006) Arthroscopic double row anchor repair of full thickness rotator cuff tear: Footprint restoration and biomechanical properties. Presented at the annual meeting of the Orthopaedic Research Society, Chicago, 19–22 Mar 2006

    Google Scholar 

  57. Mahar A, Tamborlane J, Oka R, Esch J, Pedowitz RA (2007) Single-row suture anchor repair of the rotator cuff is biomechanically equivalent to double-row repair in a bovine model. Arthroscopy 23(12):1265–1270

    Article  Google Scholar 

  58. Tingart MJ, Apreleva M, Zurakowski D, Warner JJ (2003) Pullout strength of suture anchors used in rotator cuff repair. J Bone Joint Surg Am 85-A(11):2190–2198

    Google Scholar 

  59. DeFranco MJ, Cole BJ (2009) Current perspectives on rotator cuff anatomy. Arthroscopy 25(3):305–320

    Article  Google Scholar 

  60. Bravman JT, Guttman D, Rokito AS, Kummer FJ, Jazrawi LM (2006) A biodegradable button to augment suture attachment in rotator cuff repair. Bull Hosp Jt Dis 63(3–4):126–128

    Google Scholar 

  61. Magee T, Shapiro M, Hewell G, Williams D (2003) Complications of rotator cuff surgery in which bioabsorbable anchors are used. AJR Am J Roentgenol 181(5):1227–1231

    Article  Google Scholar 

  62. Medina G, Garofo G, D’Elia CO, Bitar AC, Castropil W, Schor B (2014) Bioabsorbable suture anchor migration to the acromioclavicular joint: how far can these implants go? Case Rep Orthop 834–896

    Google Scholar 

  63. Zhang QS, Liu S, Zhang Q, Xue Y, Ge D, O’Brien MJ, Savoie FH, You Z (2012) Comparison of the tendon damage caused by four different anchor systems used in transtendon rotator cuff repair. Adv Orthop 798521

    Google Scholar 

  64. Proctor CS (2011) Long term successful arthroscopic repair of large and massive rotator cuff repair with a functional and degradable reinforcement device. J Shoulder Elbow Surg 120:1508–1513

    Google Scholar 

  65. Malcarney HL, Bonar F, Murrell GA (2005) Early inflammatory reaction after rotator cuff repair with a porcine small intestine submucosal implant: a report of 4 cases. Am J Sports Med 33(6):907–911

    Article  Google Scholar 

  66. Enclada-Diaz I, Cole BJ, MacGilivray J (2011) Rotator cuff augmentation using a novel polycarbonate polyurethane patch :preliminary results at 12 months follow-up. J Shoulder Elbow Surg 20:788–794

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodica Marinescu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Marinescu, R., Antoniac, I.V. (2016). Clinical Limitations of the Biodegradable Implants Used in Arthroscopy. In: Antoniac, I. (eds) Handbook of Bioceramics and Biocomposites. Springer, Cham. https://doi.org/10.1007/978-3-319-12460-5_46

Download citation

Publish with us

Policies and ethics