Skip to main content

Retrieval Analysis of Hip Prostheses

  • Reference work entry
  • First Online:
Handbook of Bioceramics and Biocomposites

Abstract

The investigation of retrieved orthopedic devices and adjacent tissues can be of value in the assessment of clinical complications associated with the use of a specific implant design. Adequate orthopedic implant retrieval and evaluation require the quantitative assessment of host and implant responses using specific analytical protocols and nondestructive and destructive testing procedures. Techniques used for implant and tissue evaluation should be both device designed and material specific, in order to assure the collection of quantitative data that can provide correlations and cause-and-effect relationships between biomaterial, implant design, and different variables (mechanical, manufacturing, clinical, and biological). Tools for failure analysis of orthopedic implant range in size, cost, complexity, and utility. The most valuable tool is a large database and a systematic method to characterize and store data related to orthopedic device characteristics. Continued investigation of retrieved devices is recommended to deepen our knowledge of implant failure mechanisms and to evaluate the impact of newer biomaterials and design on the performance of orthopedic implants and prostheses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ratner B, Hoffman AS, Schoen FJ, Lemons JE (1996) Biomaterials science: an introduction to materials in medicine. Academic, New York. ISBN 0125824610

    Google Scholar 

  2. Bunea D, Nocivin A (1998) Materiale biocompatibile. BREN, Bucharest. ISBN 973-98447-2-3

    Google Scholar 

  3. Burke M, Goodman S (2008) Failure mechanisms in joint replacement. In: Revell P (ed) Joint replacement technology. Woodhead, Cambridge, UK, pp 264–285

    Chapter  Google Scholar 

  4. Cook SD, Renz EA, Barrack RL, Thomas KA, Harding AF (1985) Clinical and metallurgical analysis of retrieved internal fixation devices. Clin Orthop 184:236–247

    Google Scholar 

  5. Antoniac V, Necsulescu A, Cosmeleata G (2009) Chapter 25. Biocompatible materials and shape memory alloys. In: Materials science and engineering handbook, vol 3. AGIR, Bucharest, pp 1463–1495. ISBN 978-973-720-261-1/978-973-720-064-0

    Google Scholar 

  6. Silva M., Heisel C., Schmalzried T.P. (2005) Metal-on-metal total hip replacement. Clin Orthop Relat Res (430):53–61

    Google Scholar 

  7. Howlett CR, Zreiqat H, Wu Y, McFall DW, McKenzie DR (1999) Effect of ion modification of commonly used orthopedic materials on the attachment of human bone-derived cells. J Biomed Mater Res 45:345–354

    Article  Google Scholar 

  8. ASTM F561-97, Practice for retrieval and analysis of implanted medical devices, and associated tissues, ASTM International, West Conshohocken, PA, 1997, www.astm.org

  9. Antoniac I (2013) Biologically responsive biomaterials for tissue engineering, Springer Series in Biomaterials Science and Engineering 1, Springer Science+Business Media New York, ISBN 978-1-4614-4327-8

    Google Scholar 

  10. Bruck S (1980) Properties of biomaterials in the physiological environment. CRC Press, Boca Raton

    Google Scholar 

  11. Von Recum AF (1999) Handbook of Biomaterials Evaluation: Scientific, Technical, and Clinical Testing of Implant Material, Second Edition, Taylor & Francis, Philadelphia, ISBN 1-56032-479-1

    Google Scholar 

  12. Bronzino J (1992) Handbook of bioengineering. CRC Press, New York. ISBN 0-471-96935-4

    Google Scholar 

  13. Purghel F, Badea R, Antoniac I (2001) Medicina pentru ingineri. Printech, Bucharest. ISBN 973-652-358-6

    Google Scholar 

  14. Antoniac I, Laptoiu D, Blajan AI, Cotrut C (2011) Instrumentar chirurgical si dispozitive medicale. Printech, Bucharest. ISBN 978-606-521-665-5

    Google Scholar 

  15. Furlong RJ, Osborn JF (1991) Fixation of hip prosthesis by hydroxyapatite ceramic coatings. J Bone Joint Surg 73:741–745

    Google Scholar 

  16. Cristofolini L, Teutonico AS, Monti L, Cappello A, Toni A (2003) Comparative in vitro study on the long term performance of cemented hip stems: validation of a protocol to discriminate between “good” and “bad” designs. J Biomech 36:1603–1615

    Article  Google Scholar 

  17. Ramaniraka NA, Rakotomanana LR, Leyvraz PF (2000) The fixation of the cemented femoral component: effects of stem stiffness, cement thickness and roughness of the cement-bone interface. J Bone Joint Surg Br 82(2):297–303

    Article  Google Scholar 

  18. Antoniac I (2007) Biomateriale metalice utilizate la executia componentelor endoprotezelor totale de sold. Printech, Bucharest. ISBN 978-973-718-881-6

    Google Scholar 

  19. Atasiei T, Antoniac I, Laptoiu D (2011) Failure causes in hip resurfacing arthroplasty – retrieval analysis. Int J Nano Biomater 3(4):367–381

    Article  Google Scholar 

  20. Agins HJ, Alcock NW, Bansal M, Salvati EA, Wilson PD (1998) Metallic wear in failed titanium-alloy hip replacements. J Bone Joint Surg Am 70(3):347–356

    Google Scholar 

  21. Ebramzadeh E, Campbell PA, Takamura KM, Lu Z, Sangiorgio SN (2011) Failure modes of 433 metal-on metal hip implants: how, why, and wear. Orthop Clin N Am 42:241–250

    Article  Google Scholar 

  22. Jacobs JJ, Patterson LM, Skipor AK, Urban RM, Black J (1999) Postmortem retrieval of total joint replacement components. J Biomed Mater Res (Appl Biomater) 48:385–391

    Article  Google Scholar 

  23. Kurtz SM, Hozack WJ, Purtill JJ, Marcolongo M, Kraay MJ (2006) Significance of in vivo degradation for polyethylene in total hip arthroplasty. Clin Orthop Relat Res 453:47–57

    Article  Google Scholar 

  24. Revell PA (2008) The combined role of wear particles, macrophages, and lymphocytes in the loosening of total joint prostheses. J R Soc Interface 5:1263–1278

    Article  Google Scholar 

  25. Schmalzied TP, Campbell P, Schmitt AK, Brown IC, Amstutz HC (1997) Shapes and dimensional characteristics of polyethylene wear particles generated in vivo by total knee replacements compared to total hip replacements. J Biomed Mater Res (Appl Biomater) 38:203–210

    Article  Google Scholar 

  26. Frayssinet P, Hardy D, Conte P, Delince P, Guilhem A, Bonel G (1993) Histological analysis of the bone-prosthesis interface after implantation in humans of prostheses coated with hydroxyapatite. J Orthop Surg 7:246–253

    Google Scholar 

  27. Charnley J, Kamangar A, Longfield MD (1969) The optimum size of prosthetic heads in relation to the wear of plastic sockets in total replacement of the hip. Med Biol Eng 7:31–39

    Article  Google Scholar 

  28. Amstutz HC, Grigoris P (1996) Metal-on-metal bearings in hip arthroplasty. Clin Orthop Relat Res 329:S11–S34

    Article  Google Scholar 

  29. McMinn DJW, Tracy R, Lyn K, Pynsent P (1996) Metal on metal surface replacement of the hip: experience of the McMinn prosthesis. Clin Orthop Relat Res 329:S89–S98

    Article  Google Scholar 

  30. Wagner M, Wagner H (1996) Preliminary results of uncemented metal on metal stemmed and resurfacing hip arthroplasty. Clin Orthop Relat Res 329:S78–S88

    Article  Google Scholar 

  31. Rieker CB, Schon R, Roberts P, Grigoris P (2005) Influence of the clearance on in-vitro large diameter metal-on-metal articulations pertaining to resurfacing hip implants. Orthop Clin N Am 36:135–142

    Article  Google Scholar 

  32. Udofia IJ, Jin ZM (2003) Elastohydrodynamic lubrication analysis of metal-on-metal hip resurfacing prostheses. J Biomech 36:537–544

    Article  Google Scholar 

  33. Back DL, Young DA, Shimmin AJ (2005) Serum metal ion levels following a hip resurfacing. Clin Orthop 36:187–193

    Article  Google Scholar 

  34. Brodner W, Bitzan P, Meisinger V (1997) Elevated serum cobalt with metal on metal articulating surfaces. J Bone Joint Surg Br 79(2):316–321

    Article  Google Scholar 

  35. Skipor AK, Campbell PA, Patterson LM (2002) Serum and urine metal ion levels in patient with metal on metal surface arthroplasty. J Mater Sci Mater Med 13(12):1227–1234

    Article  Google Scholar 

  36. Mabilleau G, Kwon YM, Pandit H, Murray DW, Sabokbar A (2008) Metal-on-metal hip resurfacing arthroplasty. A review of periprosthetic biological reactions. Acta Orthop 79(6):734–747

    Article  Google Scholar 

  37. Davies AP (2005) An unusual lymphocytic perivascular infiltration in tissues around contemporary metal-on-metal joint replacements. J Bone Joint Surg Am 87(1):18–27

    Article  Google Scholar 

  38. Willert HG (2005) Metal-on-metal bearings and hypersensitivity in patients with artificial hip joints. A clinical and histomorphological study. J Bone Joint Surg Am 87(1):28–36

    Article  Google Scholar 

  39. Witzleb WC (2007) Neo-capsule tissue reactions in metal-on-metal hip arthroplasty. Acta Orthop 78:211–220

    Article  Google Scholar 

  40. Pandit H (2008) Pseudotumours associated with metal-on-metal hip resurfacings. J Bone Joint Surg Br 90:847–851

    Article  Google Scholar 

  41. Toms AP (2008) MRI of early symptomatic metal-on-metal total hip arthroplasty: a retrospective review of radiological findings in 20 hips. Clin Radiol 63:49–58

    Article  Google Scholar 

  42. Beaule P, Dorey F, Le Duff M (2004) Risk factors affecting early outcome of metal-on-metal surface arthroplasty of the hip in patients 49 years old and younger. Clin Orthop 418:87

    Article  Google Scholar 

  43. Amstutz H, Le Duff M, Campbell PA, Dorey F (2007) The effects of technique changes on aseptic loosening of the femoral component in hip resurfacing. Results of 600 Conserve Plus with a 3 to 9 year follow up. J Arthroplasty 22:481–489

    Article  Google Scholar 

  44. Schmalzried TP, Fowble VA, Bitsch RG, Choi ES (2007) Total resurfacing hip. In: Callaghan JJ, Rosenberg AG, Rubash HE (eds) The adult hip, vol. 2, Philadelphia, Lippincott, Williams & Wilkins, pp 969–979

    Google Scholar 

  45. Beaule P, Lee J, Le Duff M (2004) Orientation of the femoral component in surface arthroplasty of the hip: a biomechanical and clinical analysis. J Bone Joint Surg 86-A:2015–2021

    Google Scholar 

  46. De Smet KA (2005) Belgium experience with metal-on-metal surface arthroplasty. Orthop Clin N Am 36:203–213

    Article  Google Scholar 

  47. Freeman MAR (1978) Some anatomical and mechanical considerations relevant to the surface replacement of the femoral head. Clin Orthop 134:19–24

    Google Scholar 

  48. Revell MP, McBryde CW, Bhatnagar S, Pynsent PB, Treacy RBC (2006) Metal-on-metal hip resurfacing in osteonecrosis of the femoral head’. J Bone Joint Surg Am 88:98–103

    Article  Google Scholar 

  49. Siebel T, Maubach S, Morlock MM (2006) Lessons learned from early clinical experience and results of 300 ASR hip resurfacing implantations. Proc Inst Mech Eng H 220(2):345–353

    Article  Google Scholar 

  50. Semlitsch M, Dawihl W (1994) Basic requirements of alumina ceramic in artificial hip joint balls in articulation with polyethylene cups: technical principles, Design and safety of joint implants. Hogrefe & Huber, Seattle, pp 99–101

    Google Scholar 

  51. Chana R, Facek M, Tilley S et al (2013) Ceramic-on-ceramic bearings in young patients. Bone Joint J 95-B:1603–1609

    Article  Google Scholar 

  52. Bal BS, Garino J, Ries M, Rahaman MN (2007) A review of ceramic bearing materials in total joint arthroplasty. Hip Int 17:21–30

    Google Scholar 

  53. Piconi C, Streicher RM (2014) Forty years of ceramic-on-ceramic THR bearings. Semin Arthroplasty 24(4):188–192

    Article  Google Scholar 

  54. D’Antonio JA, Sutton K (2009) Ceramic materials as bearing surfaces for total hip arthroplasty. J Am Acad Orthop Surg 17:63–68

    Article  Google Scholar 

  55. Hannouche D, Nich C, Bizot P et al (2003) Fractures of ceramic bearings: history and present status. Clin Orthop Relat Res 417:19–26

    Google Scholar 

  56. Hohman WD, Affonso J, Anders M (2011) Ceramic-on-ceramic failure secondary to head–neck taper mismatch. Am J Orthop 40(11):571–573

    Google Scholar 

  57. Affatato S, Traina F, De Fine M, Carmignato S, Toni A (2012) Alumina-on-alumina hip implants. A wear study of retrieved components. J Bone Joint Surg Br 94-B:1–6

    Article  Google Scholar 

  58. Piconi C, Labanti M, Magnani G, Caporale M, Maccauro G, Magliocchetti G (1999) Analysis of a failed alumina THR ball head. Biomaterials 20(18):1637–1646

    Article  Google Scholar 

  59. Maccauro G, Piconi C, Burger W (2004) Fracture of a Y-TZP ceramic femoral head. Analysis of a fault. J Bone Joint Surg Br 86:1192–1196

    Article  Google Scholar 

  60. Murali R, Bonar SF, Kirsh G, Walter WK, Walter WL (2008) Osteolysis in third-generation alumina ceramic-on-ceramic hip bearings with severe impingement and titanium metallosis. J Arthroplasty 23:1240e13–1240e19

    Article  Google Scholar 

  61. Restrepo C, Parvizi J, Kurtz SM, Sharkey PF, Hozack WJ, Rothman RH (2008) The noisy ceramic hip: is component malpositioning the cause? J Arthroplasty 23:643–649

    Article  Google Scholar 

  62. Walter WL, Waters TS, Gillies M et al (2008) Squeaking hips. J Bone Joint Surg Am 90(Suppl 4):102–111

    Article  Google Scholar 

  63. Dorlot JM (1992) Long-term effects of alumina components in total hip prostheses. Clin Orthop Relat Res 282:47–52

    Google Scholar 

  64. Chevillotte C, Trousdale RT, Chen Q, Guyen O, An KN (2009) Hip Squeaking: a biomechanical study of ceramic-on-ceramic bearing surfaces. Clin Orthop Relat Res 468:345–350

    Article  Google Scholar 

  65. Abdel MP, Heyse TJ, Elpers ME et al (2014) Ceramic liner fractures presenting as squeaking after primary total hip arthroplasty. J Bone Joint Surg Am Vol 96:27–31

    Article  Google Scholar 

  66. Garino J, Rahaman MN, Bal BS (2006) The reliability of modern alumina bearings in total hip arthroplasty. Semin Arthroplasty 17(3):113–119

    Article  Google Scholar 

  67. Affatato S, Modena E, Toni A et al (2012) Retrieval analysis of three generations of Bioloxs femoral heads: spectroscopic and SEM characterization. J Mech Behav Biomed Mater 13:118–128

    Article  Google Scholar 

  68. Pfaff H, Ing D (2000) Ceramic component failure and the role of proof testing. Clin Orthop Relat Res 379:29–33

    Article  Google Scholar 

  69. Al-Hajjar M, Fisher J, Tipper JL et al (2013) Wear of 36mm BIOLOXs delta ceramic-on-ceramic bearing in total hip replacements under edge loading conditions. Proc Inst Mech Eng Part H J Eng Med 227:535–542

    Article  Google Scholar 

  70. Piconi C, Porporati AA, Streicher RM (2015) Ceramics in THR bearings: behavior under off-normal conditions. Key Eng Mater 631:3–7

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iulian Vasile Antoniac .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Antoniac, I.V., Miculescu, F., Laptoiu, D., Antoniac, A., Niculescu, M., Grecu, D. (2016). Retrieval Analysis of Hip Prostheses. In: Antoniac, I. (eds) Handbook of Bioceramics and Biocomposites. Springer, Cham. https://doi.org/10.1007/978-3-319-12460-5_43

Download citation

Publish with us

Policies and ethics