Skip to main content

Biomaterial Functionalized Surfaces for Reducing Bacterial Adhesion and Infection

  • Reference work entry
  • First Online:
Book cover Handbook of Bioceramics and Biocomposites

Abstract

This chapter describes the current approaches to reduce bacterial adhesion to various biomaterial surfaces, focusing on nonfouling surfaces through patterning and hydrophobicity plasma-assisted surface treatment and deposition; incorporation of antimicrobials, antibiotics, antibiofilms, and natural extracts that are either immobilized or released; dual function antimicrobial surfaces; incorporation of nonpathogenic bacteria, bacteriophages, and biofilm dispersal agents but also reduced bacterial adhesion through tissue integration. To facilitate the design of new materials, the role of physical, chemical, and biological surface properties on bacterial adhesion is reviewed in each case, as an insight into the chemical and physical cues that affect bacterial adhesion and biofilm formation can provide ideas for creating successful antifouling or antimicrobial surfaces. The application of these surfaces is explored based on the clinical needs and the market gaps. How multidisciplinary research on surface design and engineering may have an impact on both fundamental understanding of bacterial adhesion to biomaterials and applied biomaterial science and technology is finally discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ratner BD (2012) A history of biomaterials. In: Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (eds) Biomaterials science, 3rd edn. Elsevier, Amsterdam, p xli

    Google Scholar 

  2. von Eiff C, Jansen B, Kohnen W, Becker K (2005) Infections associated with medical devices. Pathogenesis, management and prophylaxis. Drugs 65(2):179–214

    Article  Google Scholar 

  3. Von Eiff C, Peters G, Heilmann C (2002) Pathogenesis of infections due to coagulase-negative staphylococci. Lancet Infect Dis 2:677–685

    Article  Google Scholar 

  4. Maki DG, Stolz SM, Wheeler S, Mermel LA (1997) Prevention of central venous catheter-related bloodstream infection by use of an antiseptic-impregnated catheter: a randomised, controlled trial. Ann Intern Med 127:257–266

    Article  Google Scholar 

  5. Costerton JW, Stewart PS, Greenberg EP (1999) EP Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322

    Article  Google Scholar 

  6. Klevens RM, Morrison MA, Nadle J, Petit S, Gershman K, Ray S, Harrison LH, Lynfield R, Dumyati G, Townes JM, Craig AS, Zell ER, Fosheim GE, McDougal LK, Carey RB, Fridkin SK (2007) Invasive methicillin-resistant Staphylococcus aureus infections in the United States. JAMA 298(15):1763–1771

    Article  Google Scholar 

  7. UK, Office for National Statistics. MRSA deaths decrease for second year running (2009) Available at http://www.statistics.gov.uk/CCI/nugget.asp?ID=1067

  8. Kumarasamy KK, Toleman MA, Walsh TR, Bagaria J, Butt F, Balakrishnan R, Chaudhary U, Doumith M, Giske CG, Irfan S, Krishnan P, Kumar AV, Maharjan S, Mushtaq S, Noorie T, Paterson DL, Pearson A, Perry C, Pike R, Rao B, Ray U, Sarma JB, Sharma M, Sheridan E, Thirunarayan MA, Turton J, Upadhyay S, Warner M, Welfare W, Livermore DM, Woodford N (2010) Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect Dis 10:597–602

    Article  Google Scholar 

  9. Katsikogianni M, Amanatides E, Mataras DS, Missirlis YF (2008) Staphylococcus epidermidis adhesion to He, He/O2 plasma treated PET films and aged materials: contributions of surface free energy and shear rate. Colloids Surf B: Biointerfaces 65(2):257–268

    Article  Google Scholar 

  10. Balazs DJ, Triandafillu K, Chevolot Y et al (2003) Surface modification of PVC endotracheal tubes by oxygen glow discharge to reduce bacterial adhesion. Surf Interface Anal 35:301–309

    Article  Google Scholar 

  11. Rochford ETJ, Poulsson AHC, Salavarrieta Varelaa J, Lezuo P, Richards RG, Moriarty TF (2014) Bacterial adhesion to orthopaedic implant materials and a novel oxygen plasma modified PEEK surface. Colloids Surf B: Biointerfaces 113:213–222

    Article  Google Scholar 

  12. Da Ponte G, Sardella E, Fanelli F, d’Agostino R, Gristina R, Favia P (2012) Plasma deposition of PEO-like coatings with aerosol-assisted dielectric barrier discharges. Plasma Process Polym. doi:10.1002/ppap.201100201

    Google Scholar 

  13. Stallard CP, Solar P, Biederman H, Dowling DP (2015) Deposition of non-fouling PEO-like coatings using a low temperature atmospheric pressure plasma jet. Plasma Process Polym. doi:10.1002/ppap.201500034

    Google Scholar 

  14. Kingshott P, McArthur S, Thissen H, Castner DG, Griesser HJ (2002) Ultrasensitive probing of the protein resistance of PEG surfaces by secondary ion mass spectrometry. Biomaterials 23:4775–4785

    Article  Google Scholar 

  15. Kingshott P, Wei J, Bagge-Ravn D, Gadegaard N, Gram L (2003) Covalent attachment of poly(ethylene glycol) to surfaces, critical for reducing bacterial adhesion. Langmuir 19:6912–6921

    Article  Google Scholar 

  16. Katsikogianni M, Spiliopoulou I, Dowling DP, Missirlis YF (2006) Adhesion of slime producing Staphylococcus epidermidis strains to PVC and diamond-like carbon/silver/fluorinated coatings. J Mater Sci Mater Med 17:679–689

    Article  Google Scholar 

  17. Stallard CP, McDonnell KA, Onayemi OD, O’Gara JP, Dowling DP (2012) Evaluation of protein adsorption on atmospheric plasma deposited coatings exhibiting superhydrophilic to superhydrophobic properties. Biointerphases 7(1–4):1–12

    Article  Google Scholar 

  18. Katsikogianni MG, Missirlis YF (2010) Interactions of bacteria with specific biomaterial surface chemistries under flow conditions. Acta Biomater 6:1107–1118

    Article  Google Scholar 

  19. Kiremitci-Gumustederelioglu M, Pesmen A (1996) Microbial adhesion to ionogenic PHEMA, PU and PP implants. Biomaterials 17:443–449

    Article  Google Scholar 

  20. Tang L, Gu W, Yi P, Bitter JL, Hong JY, Fairbrother DH, Chen KL (2013) Bacterial anti-adhesive properties of polysulfone membranes modified with polyelectrolyte multilayers. J Membr Sci 446:201–211

    Article  Google Scholar 

  21. Olde Riekerink MB, Engbers GHM, Van der Mei HC, Busscher HJ, Feijen J (2001) Microbial adhesion onto superhydrophobic fluorinated low density poly(ethylene) films. In: Olde Riekerink MB (ed) Thesis: structural and chemical modification of polymer surfaces by gas plasma etching. Printpartners Ipskamp, Enschede, p 65

    Google Scholar 

  22. Katsikogianni MG, Syndrevelis C, Amanatides EK, Mataras DS, Missirlis YF (2007) Plasma treated and a-C:H coated PET performance in inhibiting bacterial adhesion. Plasma Process Polym 4:S1046–S1051

    Article  Google Scholar 

  23. Truong VK, Lapovok R, Estrin YS et al (2010) The influence of nano-scale surface roughness on bacterial adhesion to ultrafine-grained titanium. Biomaterials 31:3674–3683

    Article  Google Scholar 

  24. Chung KK, Schumacher JF, Sampson EM, Burne RA, Antonelli PJ, Brennan AB (2007) Impact of engineered surface microtopography on biofilm formation of Staphylococcus aureus. Biointerphases 2(2):89–94

    Article  Google Scholar 

  25. Scheuerman TR, Camper AK, Hamilton MA (1998) Effects of substratum topography on bacterial adhesion. J Colloid Interface Sci 208:23–33

    Article  Google Scholar 

  26. Wang L, Chen W, Terentjev E (2015) Effect of micro-patterning on bacterial adhesion on polyethylene terephthalate surface. J Biomater Appl 29(10):1351–1362

    Article  Google Scholar 

  27. Edwards KJ, Rutenberg AD (2001) Microbial response to surface microtopography: the role of metabolism in localized mineral dissolution. Chem Geol 180:19–32

    Article  Google Scholar 

  28. Pogodin S, Hasan J, Baulin VA et al (2013) Biophysical model of bacterial cell interactions with nano-patterned cicada wing surfaces. Biophys J 104:835–840

    Article  Google Scholar 

  29. Watson GS, Green DW, Schwarzkopf L, Li X, Cribb BW, Myhra S, Watson JA (2015) A gecko skin micro/nano structure – a low adhesion, superhydrophobic, anti-wetting, self-cleaning, biocompatible, antibacterial surface. Acta Biomater 21:109–122

    Article  Google Scholar 

  30. Cui B, Cortot Y, Veres T (2006) Polyimide nanostructures fabricated by nanoimprint lithography and its applications. Microelectron Eng 83(4):906–909

    Article  Google Scholar 

  31. Hamley IW (2003) Nanostructure fabrication using block copolymers. Nanotechnology 14(10):R39

    Article  Google Scholar 

  32. Baia M, Baia L, Astilean S (2005) Gold nanostructured films deposited on polystyrene colloidal crystal templates for surface-enhanced Raman spectroscopy. Chem Phys Lett 404(1–3):3–8

    Article  Google Scholar 

  33. Rodgers JW, Casey ME, Jedlicka SS, Coulter JP (2013) Micro injection molded microtopographic polymer plates used to mechanically direct stem cell activity. In: Proceedings of the 8th international conference on MicroManufacturing, University of Victoria, Victoria, 25–28 Mar

    Google Scholar 

  34. Tiller JC, Liao CJ, Lewis K, Klibanov AM (2001) Designing surfaces that kill bacteria on contact. Proc Natl Acad Sci U S A 98:5981–5985

    Article  Google Scholar 

  35. Lee SB, Koepsel RR, Morley SW, Matyjaszewski K, Sun Y, Russell AJ (2004) Permanent, nonleaching antibacterial surfaces. 1. Synthesis by atom transfer radical polymerization. Biomacromolecules 5:877–882

    Article  Google Scholar 

  36. Guangzheng G, Lange D, Hilpert K, Kindrachuk J, Zou Y et al (2011) The biocompatibility and biofilm resistance of implant coatings based on hydrophilic polymer brushes conjugated with antimicrobial peptides. Biomaterials 32:3899–3909

    Article  Google Scholar 

  37. Yang WJ, Cai T, Neoh K-G, Kang E-T (2011) Biomimetic anchors for antifouling and antibacterial polymer brushes on stainless steel. Langmuir 27:7065–7076

    Article  Google Scholar 

  38. Aumsuwan N, Heinhorst S, Urban MW (2007) The effectiveness of antibiotic activity of penicillin attached to expanded poly(tetrafluoroethylene) (ePTFE) Surfaces: a quantitative assessment. Biomacromolecules 8:3525–3530

    Article  Google Scholar 

  39. Campoccia D, Montanaro L, Spezialec P, Arciola CR (2010) Antibiotic-loaded biomaterials and the risks for the spread of antibiotic resistance following their prophylactic and therapeutic clinical use. Biomaterials 31(25):6363–6377

    Article  Google Scholar 

  40. Thierry B, Jasieniak M, De Smet L, Vasilev K, Griesser HJ (2008) Reactive epoxide thin film by pulsed-plasma polymerization. Langmuir 24(18):10187–10195

    Article  Google Scholar 

  41. Hilchie AL, Wuerth K, Hancock REW (2013) Immune modulation by multifaceted cationic host defense (antimicrobial) peptides. Nat Chem Biol 9:761–768

    Article  Google Scholar 

  42. Joerger RD, Sabesan S, Visioli D, Urian D, Joerger MC (2009) Antimicrobial activity of chitosan attached to ethylene copolymer films. Packag Technol Sci 22:125–138

    Article  Google Scholar 

  43. Conte A, Buonocore GG, Sinigaglia M et al (2008) Antimicrobial activity of immobilized lysozyme on plasma-treated polyethylene films. J Food Prot 71:119–125

    Google Scholar 

  44. Katsikogianni MG, Hancock REW, Devine DD, Wood DJ (2015) Cell vs. bacterial viability in the presence of host defence peptides and RGD. Eur Cell Mater 30(2):55

    Google Scholar 

  45. Kazemzadeh-Narbat M, Kindrachuk J, Duan K, Jenssen H, Hancock REW, Wang R (2010) Antimicrobial peptides on calcium phosphate-coated titanium for the prevention of implant-associated infections. Biomaterials 31:9519–9526

    Article  Google Scholar 

  46. Joerger RD (2007) Antimicrobial films for food applications: a quantitative analysis of their effectiveness. Packag Technol Sci 20:231–273

    Article  Google Scholar 

  47. Cowan MM (1999) Plant products as antimicrobial agents. Clin Microbiol Rev 12(4):564–582

    Google Scholar 

  48. Vasilev K, Griesser SS, Griesser H (2011) Antibacterial surfaces and coatings produced by plasma techniques. Plasma Process Polym 8:1010–1023

    Article  Google Scholar 

  49. Stigter M, de Groot K, Layrolle P (2002) Incorporation of tobramycin into biomimetic hydroxyapatite coating on titanium. Biomaterials 23:4143–4153

    Article  Google Scholar 

  50. Danielle N, Dijkstra RJB, Thompson JI, van der Mei HC, Busscher HJ (2011) Antibacterial efficacy of a new gentamicin-coating for cementless prostheses compared to gentamicin-loaded bone cement. J Orthop Res 29:1654–1661

    Article  Google Scholar 

  51. Mavric E, Wittmann S, Barth G, Henle T (2008) Identification and quantification of methylglyoxal as the dominant antibacterial constituent of Manuka (Leptospermum scoparium) honeys from New Zealand. Mol Nutr Food Res 52(4):483–489

    Article  Google Scholar 

  52. Chopra I (2007) The increasing use of silver-based products as antimicrobial agents: a useful development or a cause for concern? J Antimicrob Chemother 59:587–590

    Article  Google Scholar 

  53. Daniel A, Le Pen C, Archambeau C, Reniers F (2009) Use of a PECVD–PVD process for the deposition of copper containing organosilicon thin films on steel. Appl Surf Sci 256:S82–S85

    Article  Google Scholar 

  54. Perelshtein I, Applerot G, Perkas N et al (2009) Antibacterial properties of an in situ generated and simultaneously deposited nanocrystalline ZnO on fabrics. ACS Appl Mater Interfaces 1(2):361–366

    Article  Google Scholar 

  55. Li Z, Lee D, Sheng X, Cohen RE, Rubner MF (2006) Two-level antibacterial coating with both release-killing and contact-killing capabilities. Langmuir 22:9820–9823

    Article  Google Scholar 

  56. Yu Q, Zhang Y, Wang H, Brash JL, Chen H (2011) Anti-fouling bioactive surfaces. Acta Biomater 7:1550–1557

    Article  Google Scholar 

  57. Aumsuwan N, McConnell MS, Urban MW (2009) Tunable antimicrobial polypropylene surfaces: simultaneous attachment of penicillin (Gram+) and gentamicin (Gram-). Biomacromolecules 10:623–629

    Article  Google Scholar 

  58. Follmann HD, Martins AF, Gerola AP, Burgo TA, Nakamura CV, Rubira AF et al (2012) Antiadhesive and antibacterial multilayer films via layer-by-layer assembly of TMC/heparin complexes. Biomacromolecules 13:3711–3722

    Article  Google Scholar 

  59. Yang H, You W, Shen Q, Wang X, Sheng J, Cheng D et al (2014) Preparation of lotus-leaf-like antibacterial film based on mesoporous silica microcapsule-supported Ag nanoparticles. RSC Adv 4:2793–2796

    Article  Google Scholar 

  60. Katsikogianni MG, Foka A, Sardella E, Ingrosso C, Favia P, Mangone A, Spiliopoulou I, Missirlis YF (2013) Fluid flow and sub-bactericidal release of silver from organic nanocomposite coatings enhance ica operon expression in Staphylococcus epidermidis. J Biomater Nanobiotechnol 4(4A):30–40

    Article  Google Scholar 

  61. Yu Q, Cho J, Shivapooja P, Ista LK, Lopez GP (2013) Nanopatterned smart polymer surfaces for controlled attachment, killing, and release of bacteria. ACS Appl Mater Interfaces 5:9295–9304

    Article  Google Scholar 

  62. Yu Q, Johnson LM, Lopez GP (2014) Nanopatterned polymer brushes for triggered detachment of anchorage-dependent cells. Adv Funct Mater 24:3751–3759

    Article  Google Scholar 

  63. Yu Q, Ista LK, Lopez GP (2014) Nanopatterned antimicrobial enzymatic surfaces combining biocidal and fouling release properties. Nanoscale 6:4750–4757

    Article  Google Scholar 

  64. Trautner BW, Hull RA, Thornby JI, Darouiche R (2007) Coating urinary catheters with an avirulent strain of escherichia coli as a means to establish asymptomatic colonization. Infect Control Hosp Epidemiol 28(1):92–94

    Article  Google Scholar 

  65. Nagy ZS, Wagner I, Suhajda A, Tobak T, Harasztos AH, Vigh T, Soti PL, Pataki H, Molnar K, Marosi G (2014) Nanofibrous solid dosage form of living bacteria prepared by electrospinning. Exp Polym Lett 8(5):352–361

    Article  Google Scholar 

  66. Tamura S, Yonezawa H, Moteg M, Nakao R, Yoneda S, Watanabe H, Yamazaki T, Senpuku H (2009) Inhibiting effects of Streptococcus salivarius on competence-stimulating peptide-dependent biofilm formation by Streptococcus mutans. Oral Microbiol Immunol 24(2):152–161

    Article  Google Scholar 

  67. Kolodkin-Gal I, Romero D, Cao S, Clardy J, Kolter R, Losick R (2010) D-amino acids trigger biofilm disassembly. Science 328(5978):627–629

    Article  Google Scholar 

  68. Pavlukhina SV, Kaplan JB, Xu L, Chang W, Yu X, Madhyastha S, Yakandawala N, Mentbayeva A, Khan B, Sukhishvili SA (2012) Noneluting enzymatic antibiofilm coatings. ACS Appl Mater Interfaces 4(9):4708–4716

    Article  Google Scholar 

  69. Lu TK, Collins JJ (2007) Dispersing biofilms with engineered enzymatic bacteriophage. Proc Natl Acad Sci U S A 104:11197–11202

    Article  Google Scholar 

  70. Cademartiri R, Anany H, Gross I, Bhayani R, Griffiths M, Brook MA (2010) Immobilization of bacteriophages on modified silica particles. Biomaterials 31(7):1904–1910

    Article  Google Scholar 

  71. Schrementi ME, Ferreira AM, Zender C, DiPietro LA (2008) Site-specific production of TGF-beta in oral mucosal and cutaneous wounds. Wound Repair Regen 16:80–86

    Article  Google Scholar 

  72. McKeown ST, Barnes JJ, Hyland PL, Lundy FT, Fray MJ, Irwin CR (2007) Matrix metalloproteinase-3 differences in oral and skin fibroblasts. J Dent Res 86:457–462

    Article  Google Scholar 

  73. Zelles T, Purushotham K, Macauley S, Oxford G, Humphreys-Beher M (1995) Concise review: saliva and growth factors: the fountain of youth resides in us all. J Dent Res 74:1826–1832

    Article  Google Scholar 

  74. Chai WL, Brook IM, Palmquist A, Van Noort R, Moharamzadeh K (2012) The biological seal of the implant soft tissue interface evaluated in a tissue-engineered oral mucosal model. J R Soc Interface 9:3528–3538

    Article  Google Scholar 

  75. Engels-Deutsch M, Rizk S, Haïkel Y (2011) Streptococcus mutans antigen I/II binds to α5β1 integrins via its A-domain and increases β1 integrins expression on periodontal ligament fibroblast cells. Arch Oral Biol 56:22–28

    Article  Google Scholar 

  76. Gad GFM, Aziz AAA, Ibrahem RA (2012) In-vitro adhesion of Staphylococcus spp. to certain orthopedic biomaterials and expression of adhesion genes. J Appl Pharm Sci 2:145–149

    Google Scholar 

  77. Trampuz A, Zimmerli W (2006) Diagnosis and treatment of infections associated with fracture-fixation devices. Injury 37:S59–S66

    Article  Google Scholar 

  78. Anagnostakos K, Schröder K (2012) Antibiotic-impregnated bone grafts in orthopaedic and trauma surgery: a systematic review of the literature. Int J Biomater. vol. 2012, Article ID 538061:9

    Google Scholar 

  79. Oga M, Arizono T, Sugioka Y (1993) Bacterial adherence to bioinert and bioactive materials studied in vitro. Acta Orthop Scand 64(3):273–276

    Article  Google Scholar 

  80. Broggini N, McManus LM, Hermann JS, Medina RU, Oates TW, Schenk RK, Buser D, Mellonig JT, Cochran DL (2003) Persistent acute inflammation at the implant-abutment. J Dent Res 82(3):232–237

    Article  Google Scholar 

  81. Aas JA, Paster BJ, Stokes LN, Olsen I, Dewhirst FE (2005) Defining the normal bacterial flora of the oral cavity. J Clin Microbiol 43(11):5721–5732

    Article  Google Scholar 

  82. Klinge B, Meyle J, Working G (2012) Peri-implant tissue destruction. The third EAO consensus conference 2012. Clin Oral Implants Res 23(S6):108–110

    Article  Google Scholar 

  83. Elter C, Heuer W, Demling A, Hannig M, Heidenblut T, Bach FW et al (2008) Supra- and subgingival biofilm formation on implant abutments with different surface characteristics. Int J Oral Maxillofac Implants 23(2):327–334

    Google Scholar 

  84. Zitzmann NU, Abrahamsson I, Berglundh T, Lindhe J (2002) Soft tissue reactions to plaque formation at implant abutments with different surface topography. J Clin Periodontol 29(5):456–461

    Article  Google Scholar 

  85. Berglundh T, Gotfredsen K, Zitzmann NU, Lang NP, Lindhe J (2007) Spontaneous progression of ligature induced peri-implantitis at implants with different surface roughness: an experimental study in dogs. Clin Oral Implants Res 18:655–661

    Article  Google Scholar 

  86. Albouy J-P, Abrahamsson I, Berglundh T (2012) Spontaneous progression of experimental peri-implantitis at implants with different surface characteristics: an experimental study in dogs. J Clin Periodontol 39:182–187

    Article  Google Scholar 

  87. Alsabeeha NH, Ma S, Atieh MA (2012) Hydroxyapatite-coated oral implants: a systematic review and meta-analysis. Int J Oral Maxillofac Implants 27(5):1123–1130

    Google Scholar 

  88. Cheng K, Weng W, Wang H, Zhang S (2005) In vitro behavior of osteoblast-like cells on fluoridated hydroxyapatite coatings. Biomaterials 26(32):6288–6295

    Article  Google Scholar 

  89. Tillmanns HWS, Hermann JS, Tiffee JC, Burgess AV, Meffert RM (1998) Evaluation of three different dental implants in ligature-induced peri-implantitis in the beagle dog. Part II. Histology and microbiology. Int J Oral Maxillofac Implants 13:59–68

    Google Scholar 

  90. Turner TM, Urban RM, Hall DJ, Chye PC, Segreti J, Gitelis S (2005) Local and systemic levels of tobramycin delivered from calcium sulfate bone graft substitute pellets. Clin Orthop Relat Res 437:97–104

    Article  Google Scholar 

  91. Miclau T, Dahners LE, Lindsey RW (1993) In Vitro pharrnacokinetics of antibiotic release from locally irnplantable materials. J Orthop Res 11:627–632

    Article  Google Scholar 

  92. Kent ME, Rapp RP, Smith KM (2006) Antibiotic beads and osteomyelitis: here today, what’s coming tomorrow? Orthopedics 29:599–603

    Google Scholar 

  93. Huang Z-M, He C-L, Yang A, Zhang Y, Han X-J, Yin J, Wu Q (2006) Encapsulating drugs in biodegradable ultrafine fibers through co-axial electrospinning. J Biomed Mater Res A 77:169–179

    Article  Google Scholar 

  94. Torres-Giner S, Martinez-Abad A, Gimeno-Alcaniz JV, Ocio MJ, Lagaron JM (2012) Controlled delivery of gentamicin antibiotic from bioactive electrospun polylactide-based ultrathin fibers. Adv Biomater 14:B112–B122

    Google Scholar 

  95. Shi M, Kretlow JD, Nguyen A, Young S, Baggett LS, Wong ME, Kasper FK, Mikos AG (2010) Antibiotic-releasing porous polymethylmethacrylate constructs for osseous space maintenance and infection control. Biomaterials 31:4146–4156

    Article  Google Scholar 

  96. Mendel V, Simanowski H-J, Scholz HC, Heymann H (2005) Therapy with gentamicin-PMMA beads, gentamicin-collagen sponge, and cefazolin for experimental osteomyelitis due to Staphylococcus aureus in rats. Arch Orthop Trauma Surg 125:363–368

    Article  Google Scholar 

  97. Tofuku K, Koga H, Yanase M, Komiya S (2012) The use of antibiotic-impregnated fibrin sealant for the prevention of surgical site infection associated with spinal instrumentation. Eur Spine J 21:2027–2033

    Article  Google Scholar 

  98. Bennett-Guerrero E, Ferguson TB, Lin M, Garg J, Mark DB et al (2010) Effect of an implantable gentamicin-collagen sponge on sternal wound infections following cardiac surgery. A randomized trial. JAMA 304:755–762

    Article  Google Scholar 

  99. Becker PL, Smith RA, Williams RS, Dutkowsky JP (1994) Comparison of antibiotic release from polymethylmethacrylate beads and sponge collagen. J Orthop Res 12:737–741

    Article  Google Scholar 

  100. CDC (2013) Report online at http://www.cdc.gov/nhsn/pdfs/validation/2013/pscmanual_july2013.pdf

  101. BCC Research (2012) HLC049C medical device coatings. Available online at http://www.bccresearch.com/market-research/healthcare/medical-device-coatings-market-hlc049c.html

  102. Klevens RM, Edwards JR, Richards CL, Horan TC, Gaynes RP, Pollock DA, Cardo DM (2007) Estimating health care-associated infections and deaths in U.S. Hospitals 122:160–166

    Google Scholar 

  103. Scott RD (2009) The direct medical costs of healthcare-associated infections in U.S. hospitals and the benefits of prevention. Available online at http://www.cdc.gov/hai/pdfs/hai/scott_costpaper.pdf

  104. Frost and Sullivan (2010) N71A-54 U.S. Advanced wound care market. Available online at http://www.frost.com/sublib/display-report.do?id=N71A-01-00-00-00&bdata=bnVsbEB%2BQEJhY2tAfkAxMzk0NzA3NzMzNDU4

  105. Sorger JI, Kirk PG, Ruhnke CJ, Bjornson SH, Levy MS, Cockrin J, Tang PAB (1999) Once daily, high dose versus divided, low dose gentamicin for open fractures. Clin Orthop Relat Res 1(366):197–204

    Article  Google Scholar 

  106. Court-Brown CM, McBirnie J (1995) The epidemiology of tibial fractures. J Bone Joint Surg (Br) 77(3):417–421

    Google Scholar 

  107. Department of Health (2012) National schedule of reference costs 2011–2012. Available online at https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/213060/2011-12-reference-costs-publication.pdf

  108. Life expectancy (UK): Period expectations of Life (Years), (2013) Government Actuary Department

    Google Scholar 

  109. Darouiche RO (2004) Treatment of infections associated with surgical implants. N Engl J Med 350(14):1422–1429

    Article  Google Scholar 

  110. Li D, Zheng Q, Wang Y, Chen H (2013) Combining surface topography with polymer chemistry: exploring new interfacial biological phenomena. Polym Chem 5:14–24

    Article  Google Scholar 

  111. Zhao J, Song L, Shi Q, Luan S, Yin J (2013) Antibacterial and hemocompatibility switchable polypropylene nonwoven fabric membrane surface. ACS Appl Mater Interfaces 5:5260–5268

    Article  Google Scholar 

  112. Baca-Delancey RR, South MMT, Ding X, Rather PN (1999) Escherichia coli genes regulated by cell-to-cell signalling. Proc Natl Acad Sci U S A 96:4610–4614

    Article  Google Scholar 

  113. Fitzpatrick F, Humphreys H, Smythy E, Kennedy CA, O’Gara JP (2002) Environmental regulation of biofilm formation in intensive care unit isolates of Staphylococcus epidermidis. J Hosp Infect 42:212–218

    Article  Google Scholar 

  114. O’Gara JP (2007) Ica and beyond: biofilm mechanisms and regulation in Staphylococcus epidermidis and Staphylococcus aureus. FEMS Microbiol Lett 270:179–188

    Article  Google Scholar 

  115. Ishibashi K, Shimada K, Kawato T, Kaji S, Maeno M, Sato S, Ito K (2010) Inhibitory effects of low-energy pulsed ultrasonic stimulation on cell surface protein antigen C through heat shock proteins GroEL and DnaK in Streptococcus mutans. Appl Environ Microbiol 76(3):751–756

    Article  Google Scholar 

  116. Foka A, Katsikogianni MG, Anastassiou ED, Spiliopoulou I, Missirlis YF (2012) The combined effect of surface chemistry and flow conditions on Staphylococcus epidermidis adhesion and ica operon expression. Eur Cell Mater 24:386–402

    Google Scholar 

Download references

Acknowledgement

MGK work for this chapter was partially funded by WELMEC, Centre of Excellence in Medical Engineering funded by the Wellcome Trust and EPSRC, under grant number WT 088908/Z/09/Z. Professor REW Hancock is acknowledged for providing the peptides used in Fig. 3 and Ref. [44] and Professor DD Devine for valuable discussions on peptides antimicrobial properties. Dr. S Patel (Fluxion Ltd.) is acknowledged for his help with the BioFlux, a microfluidic system used for the biofilm formation presented in Fig. 3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria G. Katsikogianni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Katsikogianni, M.G., Wood, D.J., Missirlis, Y.F. (2016). Biomaterial Functionalized Surfaces for Reducing Bacterial Adhesion and Infection. In: Antoniac, I. (eds) Handbook of Bioceramics and Biocomposites. Springer, Cham. https://doi.org/10.1007/978-3-319-12460-5_32

Download citation

Publish with us

Policies and ethics