Skip to main content

Ceramic-Polymer Composites for Biomedical Applications

  • Reference work entry
  • First Online:

Abstract

Several kinds of ceramics exhibit direct bone bonding through formation of biologically active hydroxyapatite layer after implantation in bony defects. They are called bioactive ceramics and play an important role in clinical applications. However, there are still some drawbacks on clinical applications because conventional bioactive ceramics essentially have lower fracture toughness and higher Young’s modulus than natural bone. The bone takes an organic–inorganic composite where apatite nanocrystals are precipitated on collagen fibers. Therefore, problems on mechanical properties of the bioactive ceramics can be solved by designed composites composed of constituents driving bone-bonding capability. In this chapter, current research topics on development of the various organic–inorganic composites designed for biomedical application have been reviewed. Mechanical mixing of bioactive fillers in organic polymer matrix is a typical processing for fabrication of bioactive composites. In addition, coating in aqueous conditions is an important process for fabricating bioactive composites since their surface property and interaction with surrounding body fluid and tissues govern the biological activity of the materials. Functions of drug delivery, diagnosis, and treatment of cancer can be provided through material design based on organic–inorganic composites.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hench LL, Wilson J (1993) Introduction. In: Hench LL, Wilson J (eds) An introduction to bioceramics. World Scientific, Singapore, pp 1–24

    Chapter  Google Scholar 

  2. Hench LL, Splinger RJ, Allen WC, Greenlee TK (1972) Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater Res Symp 2:117–141. doi:10.1002/jbm.820050611

    Google Scholar 

  3. Hench LL (1991) Bioceramics; from concept to clinic. J Am Ceram Soc 74:1487–1510. doi:10.1111/j.1151-2916.1991.tb07132.x

    Article  Google Scholar 

  4. Jarcho M, Bolen CH, Thomas MB, Bobick J, Kay JF, Doremus RH (1976) Hydroxyapatite synthesis and characterization in dense polycrystalline forms. J Mater Sci 11:2027–2035. doi:10.1007/BF02403350

    Article  Google Scholar 

  5. Kokubo T, Kim HM, Kawashita M (2003) Novel bioactive materials with different mechanical properties. Biomaterials 24:2161–2175. doi:10.1016/S0142-9612(03)00044-9

    Article  Google Scholar 

  6. Park JB, Lakes RS (1992) Biomaterials, an introduction, 2nd edn. Plenum Press, New York

    Book  Google Scholar 

  7. Neo M, Kotani S, Fujita Y, Nakamura T, Yamamuro T, Bando Y, Ohtsuki C, Kokubo T (1992) Differences in ceramic-bone interface between surface-active ceramics and resorbable ceramics: a study by scanning and transmission electron microscopy. J Biomed Mater Res 26:255–267. doi:10.1002/jbm.820260210

    Article  Google Scholar 

  8. Cho SB, Nakanishi K, Kokubo T, Soga N, Ohtsuki C, Nakamura T, Kitsugi T, Yamamuro T (1995) Dependence of apatite formation on silica gel on its structure: effect of heat treatment. J Am Ceram Soc 78:1769–1774. doi:10.1111/j.1151-2916.1995.tb08887.x

    Article  Google Scholar 

  9. Kokubo T, Takadama H (2006) How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27:2907–2915. doi:10.1016/j.biomaterials.2006.01.017

    Article  Google Scholar 

  10. Oyane A, Kim HM, Furuya T, Kokubo T, Miyazaki T, Nakamura T (2003) Preparation and assessment of revised simulated body fluid. J Biomed Mater Res 65A:188–195. doi:10.1002/jbm.a.10482

    Article  Google Scholar 

  11. Li P, Ohtsuki C, Kokubo T, Nakanishi K, Soga N, de Groot K (1994) The role of hydrated silica, titania and alumina in inducing apatite on implants. J Biomed Mater Res 28:7–15. doi:10.1002/jbm.820280103

    Article  Google Scholar 

  12. Uchida M, Kim HM, Kokubo T, Fujibayashi S, Nakamura T (2003) Structural dependence of apatite formation on titania gels in a simulated body fluid. J Biomed Mater Res A 64:164–170. doi:10.1002/jbm.a.10414

    Article  Google Scholar 

  13. Uchida M, Kim HM, Kokubo T, Miyaji F, Nakamura T (2001) Bonelike apatite formation induced on zirconia gel in a simulated body fluid and its modified solutions. J Am Ceram Soc 84:2041–2044. doi:10.1111/j.1151-2916.2001.tb00955.x

    Article  Google Scholar 

  14. Miyazaki T, Kim HM, Miyaji F, Kokubo T, Nakamura T (2000) Bioactive tantalum metal prepared by NaOH treatment. J Biomed Mater Res 50:35–42. doi:10.1002/(SICI)1097-4636(200004)50:1<35::AID-JBM6>3.0.CO;2-8

    Article  Google Scholar 

  15. Miyazaki T, Kim HM, Kokubo T, Kato H, Nakamura T (2001) Induction and acceleration of bonelike apatite formation on tantalum oxide gel in simulated body fluid. J Sol-Gel Sci Technol 21:83–88. doi:10.1023/A:1011265701447

    Article  Google Scholar 

  16. Miyazaki T, Kim HM, Kokubo T, Ohtsuki C, Nakamura T (2001) Bonelike apatite formation induced on niobium oxide gels in simulated body fluid. J Ceram Soc Jpn 109:934–938. doi:10.2109/jcersj.109.1275_929

    Article  Google Scholar 

  17. Tanahashi M, Matsuda T (1997) Surface functional group dependence on apatite formation on self-assembled monolayers in a simulated body fluid. J Biomed Mater Res 34:305–315. doi:10.1002/(SICI)1097-4636(19970305)34:33.0.CO;2-O

    Article  Google Scholar 

  18. Kawai T, Ohtsuki C, Kamitakahara M, Miyazaki T, Tanihara M, Sakaguchi Y, Konagaya S (2004) Coating of apatite layer on polyamide films containing sulfonic groups by biomimetic process. Biomaterials 25:4529–4534. doi:10.1016/j.biomaterials.2003.11.039

    Article  Google Scholar 

  19. Miyazaki T, Imamura M, Ishida E, Ashizuka M, Ohtsuki C (2009) Apatite formation abilities and mechanical properties of hydroxyethylmethacrylate-based organic-inorganic hybrids incorporated with sulfonic groups and calcium ions. J Mater Sci Mater Med 20:157–161. doi:10.1007/s10856-008-3556-5

    Article  Google Scholar 

  20. Ohtsuki C, Kokubo T, Yamamuro T (1992) Mechanism of apatite formation on CaO-SiO2-P2O5 glasses in a simulated body fluid. J Non-Cryst Solids 143:84–92. doi:10.1016/S0022-3093(05)80556-3

    Article  Google Scholar 

  21. Sugino A, Tsuru K, Hayakawa S, Kikuta K, Kawachi G, Osaka A, Ohtsuki C (2009) Induced deposition of bone-like hydroxyapatite on thermally oxidized titanium substrates using a spatial gap in a solution that mimics a body fluid. J Ceram Soc Jpn 117:515–520. doi:10.2109/jcersj2.117.515

    Article  Google Scholar 

  22. Shikinami Y, Okuno M (1999) Bioresorbable devices made of forged composites of hydroxyapatite and poly l-lactide (PLLA): part I. basic characteristics. Biomaterials 20:859–877. doi:10.1016/S0142-9612(98)00241-5

    Article  Google Scholar 

  23. Bonfield W (1993) Design of bioactive ceramic-polymer composites. In: Hench LL, Wilson J (eds) An introduction to bioceramics. World Scientific, Singapore, pp 299–303

    Chapter  Google Scholar 

  24. Kikuchi M, Itoh S, Ichinose S, Shinomiya K, Tanaka J (2001) Self-organization mechanism in a bone-like hydroxyapatite/collagen nanocomposite synthesized in vitro and its biological reaction in vivo. Biomaterials 22:1705–1711. doi:10.1016/S0142-9612(00)00305-7

    Article  Google Scholar 

  25. Kawai T, Matsui K, Iibuchi S, Anada T, Honda Y, Sasaki K, Kamakura S, Suzuki O, Echigo S (2011) Reconstruction of critical-sized bone defect in dog skull by octacalcium phosphate combined with collagen. Clin Oral Implants Res 13:112–123. doi:10.1111/j.1708-8208.2009.00192.x

    Google Scholar 

  26. Muramatsu K, Oba K, Mukai D, Hasegawa K, Masuda S, Yoshihara Y (2007) Subacute systemic toxicity assessment of β-tricalcium phosphate/carboxymethyl-chitin composite implanted in rat femur. J Mater Sci Mater Med 18:513–522. doi:10.1007/s10856-007-2012-2

    Article  Google Scholar 

  27. Yoshida A, Miyazaki T, Ishida E, Ashizuka M (2006) Bioactivity and mechanical properties of cellulose/carbonate hydroxyapatite composites prepared in situ through mechanochemical reaction. J Biomater Appl 21:179–194. doi:10.1177/0885328206059796

    Article  Google Scholar 

  28. Ma R, Tang T (2014) Current strategies to improve the bioactivity of PEEK. Int J Mol Sci 15:5426–5445. doi:10.3390/ijms15045426

    Article  Google Scholar 

  29. Kim IY, Sugino A, Kikuta K, Ohtsuki C, Cho SB (2009) Bioactive composites consisting of PEEK and calcium silicate powders. J Biomater Appl 24:105–118. doi:10.1177/0885328208094557

    Article  Google Scholar 

  30. Nakahara I, Takao M, Goto T, Ohtsuki C, Hibino S, Sugano N (2012) Interfacial shear strength of bioactive-coated carbon fiber reinforced polyetheretherketone after in vivo implantation. J Orthop Res 30:1618–1625. doi:10.1002/jor.22115

    Article  Google Scholar 

  31. Ishikawa K, Miyamoto Y, Kon M, Nagayama M, Asaoka K (1995) Non-decay type fast-setting calcium phosphate cement: composite with sodium alginate. Biomaterials 16:527–532. doi:10.1016/0142-9612(95)91125-I

    Article  Google Scholar 

  32. Makinen TJ, Veiranto M, Lankinen P, Moritz N, Jalava J, Tormala P, Aro HT (2005) In vitro and in vivo release of ciprofloxacin from osteoconductive bone defect filler. J Antimicrob Chemother 56:1063–1068. doi:10.1093/jac/dki366

    Article  Google Scholar 

  33. Schnieders J, Gbureck U, Thull R, Kissel T (2006) Controlled release of gentamicin from calcium phosphate-poly(lactic acid-co-glycolic acid) composite bone cement. Biomaterials 27:4239–4249. doi:10.1016/j.biomaterials.2006.03.032

    Article  Google Scholar 

  34. Otsuka M, Nakagawa H, Ito A, Higuchi WI (2010) Effect of geometrical structure on drug release rate of a three-dimensionally perforated porous apatite/collagen composite cement. J Pharm Sci 99:286–292. doi:10.1002/jps.21835

    Article  Google Scholar 

  35. Lee YM, Park YJ, Lee SJ, Ku Y, Han SB, Klokkevold PR, Chung CP (2000) The bone regenerative effect of platelet-derived growth factor-BB delivered with a chitosan/tricalcium phosphate sponge carrier. J Periodontol 71:418–424. doi:10.1902/jop.2000.71.3.418

    Article  Google Scholar 

  36. Zhang Y, Zhang M (2002) Calcium phosphate/chitosan composite scaffolds for controlled in vitro antibiotic drug release. J Biomed Mater Res 62:378–386. doi:10.1002/jbm.10312

    Article  Google Scholar 

  37. Takahashi Y, Yamamoto M, Tabata Y (2005) Enhanced osteoinduction by controlled release of bone morphogenetic protein-2 from biodegradable sponge composed of gelatin and β-tricalcium phosphate. Biomaterials 26:4856–4865. doi:10.1016/j.biomaterials.2005.01.012

    Article  Google Scholar 

  38. Leeuwenburgh S, Jo J, Wang H, Yamamoto M, Jansen JA, Tabata Y (2010) Mineralization, biodegradation, and drug release behavior of gelatin/apatite composite microspheres for bone regeneration. Biomacromolecules 11:2653–2659. doi:10.1021/bm1006344

    Article  Google Scholar 

  39. Liu X, Okada M, Maeda H, Fujii S, Furuzono T (2011) Hydroxyapatite/biodegradable poly-(l-lactide-co-caprolactone) composite microparticles as injectable scaffold by a Pickering emulsion route. Acta Biomater 7:821–828. doi:10.1016/j.actbio.2010.08.023

    Article  Google Scholar 

  40. Mima Y, Fukumoto S, Koyama H, Okada M, Tanaka S, Shoji T, Emoto M, Furuzono T, Nishizawa Y, Inaba M (2012) Enhancement of cell-based therapeutic angiogenesis using a novel type of injectable scaffolds of hydroxyapatite-polymer nanocomposite microspheres. PLoS One 7:e35199. doi:10.1371/journal.pone.0035199

    Article  Google Scholar 

  41. Kühn KD (2000) Bone cements. Springer, Berlin

    Book  Google Scholar 

  42. Dalby MJ, Di Silvio L, Harper EJ, Bonfield W (1999) In vitro evaluation of a new polymethylmethacrylate cement reinforced with hydroxyapatite. J Mater Sci Mater Med 10:793–796. doi:10.1023/A:1008907218330

    Article  Google Scholar 

  43. Shinzato S, Kobayashi M, Mousa WF, Kamimura M, Neo M, Kitamura Y, Kokubo T, Nakamura T (2000) Bioactive polymethyl methacrylate-based bone cement: comparison of glass beads, apatite- and wollastonite-containing glass-ceramic, and hydroxyapatite fillers on mechanical and biological properties. J Biomed Mater Res 51:258–272. doi:10.1002/(SICI)1097-4636(200008)51:2<258::AID-JBM15>3.0.CO;2-S

    Article  Google Scholar 

  44. Goto K, Tamura J, Shinzato S, Fujibayashi S, Hashimoto M, Kawashita M, Kokubo T, Nakamura T (2005) Bioactive bone cements containing nano-sized titania particles for use as bone substitutes. Biomaterials 26:6496–6505. doi:10.1016/j.biomaterials.2005.04.044

    Article  Google Scholar 

  45. Miyazaki T, Ohtsuki C, Kyomoto M, Tanihara M, Mori A, Kuramoto K (2003) Bioactive PMMA bone cement prepared by modification with methacryloxypropyltrimethoxysilane and calcium chloride. J Biomed Mater Res 67A:1417–1423. doi:10.1002/jbm.a.20042

    Article  Google Scholar 

  46. Sugino A, Ohtsuki C, Miyazaki T (2008) In vivo response of bioactive PMMA-based bone cement modified with alkoxysilane and calcium acetate. J Biomater Appl 23:213–228. doi:10.1177/0885328207081694

    Article  Google Scholar 

  47. Kasuga T, Maeda H, Kato K, Nogami M, Hata K, Ueda M (2003) Preparation of poly(lactic acid) composites containing calcium carbonate (vaterite). Biomaterials 24:3247–3253. doi:10.1016/S0142-9612(03)00190-X

    Article  Google Scholar 

  48. Obata A, Hotta T, Wakita T, Ota Y, Kasuga T (2010) Electrospun microfiber meshes of silicon-doped vaterite/poly(lactic acid) hybrid for guided bone regeneration. Acta Biomater 6:1248–1257. doi:10.1016/j.actbio.2009.11.013

    Article  Google Scholar 

  49. Ozawa N, Yao T (2002) Micropattern formation of apatite by combination of a biomimetic process and transcription of resist pattern. J Biomed Mater Res 62:579–586. doi:10.1002/jbm.10281

    Article  Google Scholar 

  50. Hata K, Kokubo T, Nakamura T, Yamamuro T (1995) Growth of bonelike apatite layer on a substrate by a biomimetic process. J Am Ceram Soc 78:1049–1053. doi:10.1111/j.1151-2916.1995.tb08435.x

    Article  Google Scholar 

  51. Habibovic P, Barrere F, van Blitterswijk CA, de Groot K, Layrolle P (2002) Biomimetic hydroxyapatite coating on metal implants. J Am Ceram Soc 517–522. doi:10.1111/j.1151-2916.2002.tb00126.x

    Google Scholar 

  52. Kawashita M, Nakao M, Minoda M, Kim HM, Beppu T, Miyamoto T, Kokubo T, Nakamura T (2003) Apatite-forming ability of carboxyl group-containing polymer gels in a simulated body fluid. Biomaterials 24:2477–2484. doi:10.1016/S0142-9612(03)00050-4

    Article  Google Scholar 

  53. Miyazaki T, Ohtsuki C, Akioka Y, Tanihara M, Nakao J, Sakaguchi Y, Konagaya S (2003) Apatite deposition on polyamide films containing carboxyl group in a biomimetic solution. J Mater Sci Mater Med 569–574. doi:10.1023/A:1024000821368

    Google Scholar 

  54. Miyazaki T, Ishikawa K, Shirosaki Y, Ohtsuki C (2013) Organic-inorganic composites designed for biomedical applications. Biol Pharm Bull 36:1670–1675. doi:10.1248/bpb.b13-00424

    Article  Google Scholar 

  55. Ichibouji T, Miyazaki T, Ishida E, Ashizuka M, Sugino A, Ohtsuki C, Kuramoto K (2008) Evaluation of apatite-forming ability and mechanical property of pectin hydrogels. J Ceram Soc Jpn 116:74–78. doi:10.2109/jcersj2.116.74

    Article  Google Scholar 

  56. Ichibouji T, Miyazaki T, Ishida E, Sugino A, Ohtsuki C (2009) Apatite mineralization abilities and mechanical properties of covalently cross-linked pectin hydrogels. Mater Sci Eng C 29:1765–1769. doi:10.1016/j.msec.2009.01.027

    Article  Google Scholar 

  57. Bonfield W (1996) Composite biomaterials. In: Kokubo T, Nakamura T, Miyaji F (eds) Bioceramics, vol 9. Elsevier, Oxford, pp 11–13

    Google Scholar 

  58. Chen Q, Miyata N, Kokubo T, Nakamura T (2000) Bioactivity and mechanical properties of PDMS-modified CaO–SiO2–TiO2 hybrids prepared by sol-gel process. J Biomed Mater Res 51:605–611. doi:10.1002/1097-4636(20000915)51:4<605::AID-JBM8>3.0.CO;2-U

    Article  Google Scholar 

  59. Miyazaki T, Yasunaga S, Ishida E, Ashizuka M, Ohtsuki C (2007) Effects of cross-linking agent on apatite-forming ability and mechanical property of organic-inorganic hybrids based on starch. Mater Trans 48:317–321. doi:10.2320/matertrans.48.317

    Article  Google Scholar 

  60. Kawashita M, Tanaka M, Kokubo T, Inoue Y, Yao T, Hamada S, Shinjo T (2005) Preparation of ferrimagnetic magnetite microspheres for in situ hyperthermic treatment of cancer. Biomaterials 26:2231–2238. doi:10.1016/j.biomaterials.2004.07.014

    Article  Google Scholar 

  61. Zhao J, Sekikawa H, Kawai T, Unuma H (2009) Ferrimagnetic magnetite hollow microspheres prepared via enzimatically precipitated iron hydroxide on a urease-bearing polymer template. J Ceram Soc Jpn 117:344–346. doi:10.2109/jcersj2.117.344

    Article  Google Scholar 

  62. Miyazaki T, Miyaoka A, Ishida E, Li Z, Kawashita M, Hiraoka M (2012) Preparation of ferromagnetic microcapsules for hyperthermia using water/oil emulsion as a reaction field. Mater Sci Eng C 32:692–696. doi:10.1016/j.msec.2012.01.010

    Article  Google Scholar 

  63. Mitsumori M, Hiraoka M, Shibata T, Okuno Y, Masunaga S, Koishi M, Okajima K, Nagata Y, Nishimura Y, Abe M, Ohura K, Hasegawa M, Nagae H, Ebisawa Y (1994) Development of intra-arterial hyperthermia using a dextran-magnetite complex. Int J Hyperth 10:785–793. doi:10.3109/02656739409012371

    Article  Google Scholar 

  64. Minamimura T, Sato H, Kasaoka S, Saito T, Ishizawa S, Takemori S, Tazawa K, Tsukada K (2000) Tumor regression by inductive hyperthermia combined with hepatic embolization using dextran magnetite-incorporated microspheres in rats. Int J Oncol 16:1153–1158. doi:10.3892/ijo.16.6.1153

    Google Scholar 

  65. Miyazaki T, Anan S, Ishida E, Kawashita M (2013) Carboxymethyldextran/magnetite hybrid microspheres designed for hyperthermia. J Mater Sci Mater Med 24:1125–1129. doi:10.1007/s10856-013-4874-9

    Article  Google Scholar 

  66. Matsumine A, Kusuzaki K, Matsubara T, Shintani K, Satonaka H, Wakabayashi T, Miyazaki S, Morita K, Takegami K, Uchida A (2007) Novel hyperthermia for metastatic bone tumors with magnetic materials by generating an alternating electromagnetic field. Clin Exp Metastasis 24:191–200. doi:10.1007/s10585-007-9068-8

    Article  Google Scholar 

  67. Kawashita M, Kawamura K, Li Z (2010) PMMA-based bone cements containing magnetite particles for the hyperthermia of cancer. Acta Biomater 6:3187–3192. doi:10.1016/j.actbio.2010.02.047

    Article  Google Scholar 

  68. Li Z, Kawamura K, Kawashita M, Kudo T, Kanetaka H, Hiraoka M (2012) In vitro heating capability, mechanical strength and biocompatibility assessment of PMMA-based bone cement containing magnetite nanoparticles for hyperthermia of cancer. J Biomed Mater Res 100A:2537–2545. doi:10.1002/jbm.a.34185

    Article  Google Scholar 

  69. Kuwahara Y, Miyazaki T, Shirosaki Y, Kawashita M (2014) Effects of organic polymer addition in magnetite synthesis on its crystalline structure. RSC Adv 4:23359–23363. doi:10.1039/C4RA02073A

    Article  Google Scholar 

  70. Hayashi K, Moriya M, Sakamoto W, Yogo T (2009) Chemoselective synthesis of folic acid – functionalized magnetite nanoparticles via click chemistry for magnetic hyperthermia. Chem Mater 21:1318–1325. doi:10.1021/cm803113e

    Article  Google Scholar 

  71. Shinkai M, Yanase M, Honda H, Wakabayashi T, Yoshida J, Kobayashi T (1996) Intracellular hyperthermia for cancer using magnetite cationic liposomes: in vitro study. Jpn J Cancer Res 87:1179–1183. doi:10.1111/j.1349-7006.1996.tb03129.x

    Article  Google Scholar 

  72. Ito A, Hibino E, Kobayashi C, Terasaki H, Kagami H, Ueda M, Kobayashi T, Honda H (2005) Construction and delivery of tissue-engineered human retinal pigment epithelial cell sheets, using magnetite nanoparticles and magnetic force. Tissue Eng 11:489–496. doi:10.1089/ten.2005.11.489

    Article  Google Scholar 

  73. Erbe EM, Day DE (1987) Chemical durability of Y2O3-Al2O3-SiO2 glasses for the in vivo delivery of beta radiation. J Biomed Mater Res 27:1301–1308. doi:10.1002/jbm.820271010

    Article  Google Scholar 

  74. Kawashita M, Takayama Y, Kokubo T, Takaoka GH, Araki N, Hiraoka M (2006) Enzymatic preparation of hollow yttrium oxide microspheres for in situ radiotherapy of deep-seated cancer. J Am Ceram Soc 89:1347–1351. doi:10.1111/j.1551-2916.2005.00867.x

    Article  Google Scholar 

  75. Miyazaki T, Kai T, Ishida E, Kawashita M, Hiraoka M (2010) Fabrication of yttria microcapsules for radiotherapy from water/oil emulsion. J Ceram Soc Jpn 118:479–482. doi:10.2109/jcersj2.118.479

    Article  Google Scholar 

  76. Kawashita M, Matsui N, Li Z, Miyazaki T, Kanetaka H (2011) Preparation, structure, and in vitro chemical durability of yttrium phosphate microspheres for intra-arterial radiotherapy. J Biomed Mater Res B Appl Biomater 99:45–50. doi:10.1002/jbm.b.31870

    Article  Google Scholar 

  77. Miyazaki T, Suda T, Shirosaki Y, Kawashita M (2014) Fabrication of yttrium phosphate microcapsules by an emulsion route for in situ cancer radiotherapy. J Med Biol Eng 34:14–17. doi:10.5405/jmbe.1451

    Article  Google Scholar 

  78. Schubiger PA, Beer HF, Geiger L, Rösler H, Zimmermann A, Triller J, Mettler D, Schilt W (1991) 90Y-resin particles – animal experiments on pigs with regard to the introduction of superselective embolization therapy. Int J Rad Appl Instrum B 18:305–311. doi:10.1016/0883-2897(91)90126-6

    Article  Google Scholar 

  79. Venkatachalam N, Saito Y, Soga K (2009) Synthesis of Er3+ doped Y2O3 nanophosphors. J Am Ceram Soc 92:1006–1010. doi:10.1111/j.1551-2916.2009.02986.x

    Article  Google Scholar 

  80. Uo M, Kudo E, Okada A, Soga K, Kogo Y (2009) Preparation and properties of dental composite resin cured under near infrared irradiation. J Photopolym Sci Technol 22:551–554. doi:10.2494/photopolymer.22.551

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiki Miyazaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Miyazaki, T., Kawashita, M., Ohtsuki, C. (2016). Ceramic-Polymer Composites for Biomedical Applications. In: Antoniac, I. (eds) Handbook of Bioceramics and Biocomposites. Springer, Cham. https://doi.org/10.1007/978-3-319-12460-5_16

Download citation

Publish with us

Policies and ethics