Skip to main content

Propagation of Stochasticity in Heterogeneous Media and Applications to Uncertainty Quantification

  • Reference work entry
  • First Online:
Handbook of Uncertainty Quantification
  • 9125 Accesses

Abstract

This chapter reviews several results on the derivation of asymptotic models for solutions to partial differential equations (PDE) with highly oscillatory random coefficients. We primarily consider elliptic models with random diffusion or random potential terms. In the regime of small correlation length of the random coefficients, the solution may be described either as the sum of a leading, deterministic, term, and random fluctuations, whose macroscopic law is described, or as a random solution of a stochastic partial differential equation (SPDE). Several models for such random fluctuations or SPDEs are reviewed here.

The second part of the chapter focuses on potential applications of such macroscopic models to uncertainty quantification and effective medium models. The main advantage of macroscopic models, when they are available, is that the small correlation length parameter no longer appears. Highly oscillatory coefficients are typically replaced by (additive or multiplicative) white noise or fractional white noise forcing. Quantification of uncertainties, such as, for instance, the probability that a certain function of the PDE solution exceeds a certain threshold, then sometimes takes an explicit, solvable, form. In most cases, however, the propagation of stochasticity from the random forcing to the PDE solution needs to be estimated numerically. Since (fractional) white noise oscillates at all scales (as a fractal object), its numerical discretization involves a large number of random degrees of freedom, which renders accurate computations extremely expensive. Some remarks on a coupled polynomial chaos – Monte Carlo framework and related concentration (Efron-Stein) inequalities to numerically solve problems with small-scale randomness conclude this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,099.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Armstrong, S.N., Smart, C.K.: Quantitative stochastic homogenization of elliptic equations in nondivergence form. Arch. Ration. Mech. Anal. 214, 867–911 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bal, G.: Central limits and homogenization in random media. Multiscale Model. Simul. 7(2), 677–702 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bal, G.: Convergence to SPDEs in Stratonovich form. Commun. Math. Phys. 212(2), 457–477 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bal, G.: Homogenization with large spatial random potential. Multiscale Model. Simul. 8(4), 1484–1510 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bal, G.: Convergence to homogenized or stochastic partial differential equations. Appl. Math. Res. Express 2011(2), 215–241 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bal, G., Garnier, J., Gu, Y., Jing, W.: Corrector theory for elliptic equations with long-range correlated random potential. Asymptot. Anal. 77, 123–145 (2012)

    MathSciNet  MATH  Google Scholar 

  7. Bal, G., Garnier, J., Motsch, S., Perrier, V.: Random integrals and correctors in homogenization. Asymptot. Anal. 59(1–2), 1–26 (2008)

    MathSciNet  MATH  Google Scholar 

  8. Bal, G., Ghanem, R., Langmore, I.: Large deviation theory for a homogenized and “corrected” elliptic ode. J. Differ. Equ. 251(7), 1864–1902 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bal, G., Gu, Y.: Limiting models for equations with large random potential: a review. Commun. Math. Sci. 13(3), 729–748 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bal, G., Jing, W.: Corrector theory for elliptic equations in random media with singular Green’s function. Application to random boundaries. Commun. Math. Sci. 9(2), 383–411 (2011)

    MATH  Google Scholar 

  11. Bensoussan, A., Lions, J.-L., Papanicolaou, G.C.: Homogenization in deterministic and stochastic problems. In: Symposium on Stochastic Problems in Dynamics, University of Southampton, Southampton, 1976, pp. 106–115. Pitman, London (1977)

    Google Scholar 

  12. Biskup, M., Salvi, M., Wolff, T.: A central limit theorem for the effective conductance: linear boundary data and small ellipticity contrasts. Commun. Math. Phys. 328, 701–731 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Boucheron, S., Lugosi, G., Bousquet, O.: Concentration inequalities. In: Advanced Lectures on Marchine Learning. Volume 3176 of Lecture Notes in Computer Science, pp. 208–240. Springer, Berlin (2004)

    Google Scholar 

  14. Bourgeat, A., Piatnitski, A.: Estimates in probability of the residual between the random and the homogenized solutions of one-dimensional second-order operator. Asymptot. Anal. 21, 303–315 (1999)

    MathSciNet  MATH  Google Scholar 

  15. Breiman, L.: Probability. Volume 7 of Classics in Applied Mathematics. SIAM, Philadelphia (1992)

    Google Scholar 

  16. Caffarelli, L.A., Souganidis, P.E.: Rates of convergence for the homogenization of fully nonlinear uniformly elliptic PDE in random media. Invent. Math. 180, 301–360 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chatterjee, S.: Fluctuations of eigenvalues and second order Poincaré inequalities. Prob. Theory Relat. Fields 143, 1–40 (2009)

    Article  MATH  Google Scholar 

  18. Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Cambridge University Press, Cambridge (2008)

    MATH  Google Scholar 

  19. Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications. Applications of Mathematics. Springer, New York (1998)

    Book  MATH  Google Scholar 

  20. Erdös, L., Yau, H.T.: Linear Boltzmann equation as the weak coupling limit of a random Schrödinger Equation. Commun. Pure Appl. Math. 53(6), 667–735 (2000)

    Article  MATH  Google Scholar 

  21. Figari, R., Orlandi, E., Papanicolaou, G.: Mean field and Gaussian approximation for partial differential equations with random coefficients. SIAM J. Appl. Math. 42(5), 1069–1077 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ghanem, R.G.: Hybrid stochastic finite elements and generalized Monte Carlo simulation. Trans. ASME 65, 1004–1009 (1998)

    Article  Google Scholar 

  23. Gloria, A., Otto, F.: An optimal variance estimate in stochastic homogenization of discrete elliptic equations. Ann. Probab. 39, 779–856 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gloria, A., Otto, F.: An optimal error estimate in stochastic homogenization of discrete elliptic equations. Ann. Appl. Probab. 22, 1–28 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gloria, A., Otto, F.: An optimal variance estimate in stochastic homogenization of discrete elliptic equations. ESAIM Math. Model. Numer. Anal. 48, 325–346 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Gu, Y., Bal, G.: Random homogenization and convergence to integrals with respect to the Rosenblatt proces. J. Differ. Equ. 253(4), 1069–1087 (2012)

    Article  MATH  Google Scholar 

  27. Gu, Y., Mourrat, J.-C.: Scaling limit of fluctuations in stochastic homogenization. Probab. Theory Relat. Fields (2015, to appear)

    Google Scholar 

  28. Hairer, M., Pardoux, E., Piatnitski, A.: Random homogenization of a highly oscillatory singular potential. Stoch. Partial Differ. Equ. 1, 572–605 (2013)

    MATH  Google Scholar 

  29. Jikov, V.V., Kozlov, S.M., Oleinik, O.A.: Homogenization of Differential Operators and Integral Functionals. Springer, New York (1994)

    Book  Google Scholar 

  30. Komorowski, T., Nieznaj, E.: On the asymptotic behavior of solutions of the heat equation with a random, long-range correlated potential. Potential Anal. 33(2), 175–197 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kozlov, S.M.: The averaging of random operators. Math. Sb. (N.S.) 109, 188–202 (1979)

    Google Scholar 

  32. Nolen, J.: Normal approximation for a random elliptic equation. Probab. Theory Relat. Fields 159, 661–700 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Papanicolaou, G.C., Varadhan, S.R.S.: Boundary value problems with rapidly oscillating random coefficients. In: Random Fields, Esztergom, 1979, Volumes I and II. Colloquia Mathematica Societatis János Bolyai, vol. 27, pp. 835–873. North Holland, Amsterdam/New York (1981)

    Google Scholar 

  34. Pardoux, E., Piatnitski, A.: Homogenization of a singular random One dimensional PDE. GAKUTO Int. Ser. Math. Sci. Appl. 24, 291–303 (2006)

    MathSciNet  MATH  Google Scholar 

  35. Pardoux, E., Piatnitski, A.: Homogenization of a singular random one-dimensional PDE with time-varying coefficients. Ann. Probab. 40, 1316–1356 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  36. Taqqu, M.S.: Weak convergence to fractional Brownian motion and to the Rosenblatt process. Probab. Theory Relat. Fields 31, 287–302 (1975)

    MathSciNet  MATH  Google Scholar 

  37. Yurinskii, V.V.: Averaging of symmetric diffusion in a random medium. Siberian Math. J. 4, 603–613 (1986). English translation of: Sibirsk. Mat. Zh. 27(4), 167–180 (1986, Russian)

    Google Scholar 

  38. Zhang, N., Bal, G.: Convergence to SPDE of the Schrödinger equation with large, random potential. Commun. Math. Sci. 5, 825–841 (2014)

    Article  MATH  Google Scholar 

  39. Zhang, N., Bal, G.: Homogenization of a Schrödinger equation with large, random, potential. Stoch. Dyn. 14, 1350013 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Bal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this entry

Cite this entry

Bal, G. (2017). Propagation of Stochasticity in Heterogeneous Media and Applications to Uncertainty Quantification. In: Ghanem, R., Higdon, D., Owhadi, H. (eds) Handbook of Uncertainty Quantification. Springer, Cham. https://doi.org/10.1007/978-3-319-12385-1_9

Download citation

Publish with us

Policies and ethics