Skip to main content

Compressive Sampling Methods for Sparse Polynomial Chaos Expansions

  • Reference work entry
  • First Online:

Abstract

A salient taskin uncertainty quantification (UQ) is to study the dependence of a quantity of interest (QoI) on input variables representing system uncertainties. Relying on linear expansions of the QoI in orthogonal polynomial bases of inputs, polynomial chaos expansions (PCEs) are now among the widely used methods in UQ. When there exists a smoothness in the solution being approximated, the PCE exhibits sparsity in that a small fraction of expansion coefficients are significant. By exploiting this sparsity, compressive sampling, also known as compressed sensing, provides a natural framework for accurate PCE using relatively few evaluations of the QoI and in a manner that does not require intrusion into legacy solvers. The PCE possesses a rich structure between the QoI being approximated, the polynomials, and input variables used to perform the approximation and where the QoI is evaluated. In this chapter insights are provided into this structure, summarizing a portion of the current literature on PCE via compressive sampling within the context of UQ.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   1,099.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   1,399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Adcock, B.: Infinite-dimensional 1 minimization and function approximation from pointwise data. arXiv preprint arXiv:150302352 (2015)

    Google Scholar 

  2. Arlot, S., Celisse, A.: A survey of cross-validation procedures for model selection. Stat. Surv. 4, 40–79 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Askey, R., Wainger, S.: Mean convergence of expansions in Laguerre and hermite series. Am. J. Math. 87(3), 695–708 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  4. Askey, R.A., Arthur, W.J.: Some Basic Hypergeometric Orthogonal Polynomials That Generalize Jacobi Polynomials, vol. 319. AMS, Providence (1985)

    MATH  Google Scholar 

  5. Babacan, S., Molina, R., Katsaggelos, A.: Bayesian compressive sensing using laplace priors. IEEE Trans. Image Process. 19(1), 53–63 (2010)

    Article  MathSciNet  Google Scholar 

  6. Becker, S., Bobin, J., Candès, E.J.: NESTA: A fast and accurate first-order method for sparse recovery. ArXiv e-prints (2009). Available from http://arxiv.org/abs/0904.3367

  7. Berg, E.v., Friedlander, M.P.: SPGL1: a solver for large-scale sparse reconstruction (2007). Available from http://www.cs.ubc.ca/labs/scl/spgl1

  8. Berveiller, M., Sudret, B., Lemaire, M.: Stochastic finite element: a non intrusive approach by regression. Eur. J. Comput. Mech. Revue (Européenne de Mécanique Numérique) 15(1–3), 81–92 (2006)

    Google Scholar 

  9. Blatman, G., Sudret, B.: Adaptive sparse polynomial chaos expansion based on least angle regression. J. Comput. Phys. 230, 2345–2367 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bouchot, J.L., Bykowski, B., Rauhut, H., Schwab, C.: Compressed sensing Petrov-Galerkin approximations for parametric PDEs. In: International Conference on Sampling Theory and Applications (SampTA 2015), pp. 528–532. IEEE (2015)

    Google Scholar 

  11. Boufounos, P., Duarte, M., Baraniuk, R.: Sparse signal reconstruction from noisy compressive measurements using cross validation. In: Proceedings of the 2007 IEEE/SP 14th Workshop on Statistical Signal Processing (SSP’07), Madison, pp. 299–303. IEEE Computer Society (2007)

    Google Scholar 

  12. Bruckstein, A.M., Donoho, D.L., Elad, M.: From sparse solutions of systems of equations to sparse modeling of signals and images. SIAM Rev. 51(1), 34–81 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Candès, E., Tao, T.: Decoding by linear programming. IEEE Trans. Inf. Theory 51(12), 4203–4215 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Candès, E., Tao, T.: Near optimal signal recovery from random projections: Universal encoding strategies? IEEE Trans. Inf. Theory 52(12), 5406–5425 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Candès, E., Wakin, M.: An introduction to compressive sampling. IEEE Signal Process. Mag. 25(2), 21–30 (2008)

    Article  Google Scholar 

  16. Candès, E., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Candès, E., Wakin, M., Boyd, S.: Enhancing sparsity by reweighted 1 minimization. J. Fourier Anal. Appl. 14(5), 877–905 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Candès, E.J.: The restricted isometry property and its implications for compressed sensing. C. R. Math. 346(9), 589–592 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Candés, E.J., Plan, Y.: A probabilistic and ripless theory of compressed sensing. IEEE Trans. Inf. Theory 57(11), 7235–7254 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Candes, E.J., Romberg, J.K., Tao, T.: Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math. 59(8), 1207–1223 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Chartrand, R., Yin, W.: Iteratively reweighted algorithms for compressive sensing. In: 33rd International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Las Vegas (2008)

    Google Scholar 

  22. Chen, S., Donoho, D., Saunders, M.: Atomic decomposition by basis pursuit. SIAM J. Sci. Comput. 20, 33–61 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. Chen, S., Donoho, D., Saunders, M.: Atomic decomposition by basis pursuit. SIAM Rev. 43(1), 129–159 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  24. Dai, W., Milenkovic, O.: Subspace pursuit for compressive sensing signal reconstruction. IEEE Trans. Inf. Theory 55(5), 2230–2249 (2009)

    Article  MathSciNet  Google Scholar 

  25. Davenport, M.A., Duarte, M.F., Eldar, Y.C., Kutyniok, G.: Introduction to Compressed Sensing. Cambridge University Press, Cambridge (2012)

    Book  Google Scholar 

  26. Donoho, D.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  27. Donoho, D., Huo, X.: Uncertainty principles and ideal atomic decomposition. IEEE Trans. Inf. Theory 47(7), 2845–2862 (2001). doi:10.1109/18.959265

    Article  MathSciNet  MATH  Google Scholar 

  28. Donoho, D., Tanner, J.: Observed universality of phase transitions in high-dimensional geometry, with implications for modern data analysis and signal processing. Philos. Trans. R Soc. A Math. Phys. Eng. Sci. 367(1906), 4273–4293 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Donoho, D., Elad, M., Temlyakov, V.: Stable recovery of sparse overcomplete representations in the presence of noise. IEEE Trans. Inf. Theory 52(1), 6–18 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  30. Donoho, D., Stodden, V., Tsaig, Y.: About SparseLab (2007)

    Google Scholar 

  31. Doostan, A., Owhadi, H.: A non-adapted sparse approximation of PDEs with stochastic inputs. J. Comput. Phys. 230, 3015–3034 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Doostan, A., Owhadi, H., Lashgari, A., Iaccarino, G.: Non-adapted sparse approximation of PDEs with stochastic inputs. Tech. Rep. Annual Research Brief, Center for Turbulence Research, Stanford University (2009)

    Google Scholar 

  33. Eldar, Y., Kutyniok, G.: Compressed Sensing: Theory and Applications. Cambridge University Press, Cambridge (2012)

    Book  Google Scholar 

  34. Foucart, S.: A note on guaranteed sparse recovery via, 1-minimization. Appl. Comput. Harmonic Anal. 29(1), 97–103 (2010). Elsevier

    Google Scholar 

  35. Gerstner, T., Griebel, M.: Numerical integration using sparse grids. Numer. Algorithms 18(3–4):209–232 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  36. Ghanem, R., Spanos, P.: Stochastic Finite Elements: A Spectral Approach. Dover, Minneola (2002)

    MATH  Google Scholar 

  37. Gilks, W.R., Richardson, S., Spiegelhalter, D.J.: Markov Chain Monte Carlo in Practice, vol 2. CRC Press, Boca Raton (1996)

    Google Scholar 

  38. Hadigol, M., Maute, K., Doostan, A.: On uncertainty quantification of lithium-ion batteries. arXiv preprint arXiv:150507776 (2015)

    Google Scholar 

  39. Hampton, J., Doostan, A.: Coherence motivated sampling and convergence analysis of least squares polynomial chaos regression. Comput. Methods Appl. Mech. Eng. 290, 73–97 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  40. Hampton, J., Doostan, A.: Compressive sampling of polynomial chaos expansions: convergence analysis and sampling strategies. J. Comput. Phys. 280, 363–386 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  41. Hosder, S., Walters, R., Perez, R.: A non-intrusive polynomial chaos method for uncertainty propagation in CFD simulations. In: 44th AIAA Aerospace Sciences Meeting and Exhibit, AIAA-2006-891, Reno (NV) (2006)

    Google Scholar 

  42. Huang, A.: A re-weighted algorithm for designing data dependent sensing dictionary. Int. J. Phys. Sci. 6(3), 386–390 (2011)

    Google Scholar 

  43. Jakeman, J., Eldred, M., Sargsyan, K.: Enhancing 1-minimization estimates of polynomial chaos expansions using basis selection. J. Comput. Phys. 289, 18–34 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  44. Jakeman, J.D., Eldred, M.S., Sargsyan, K.: Enhancing 1-minimization estimates of polynomial chaos expansions using basis selection. ArXiv e-prints 1407.8093 (2014)

    Google Scholar 

  45. Ji, S., Xue, Y., Carin, L.: Bayesian compressive sensing. IEEE Trans. Signal Process. 56(6), 2346–2356 (2008)

    Article  MathSciNet  Google Scholar 

  46. Jones, B., Parrish, N., Doostan, A.: Postmaneuver collision probability estimation using sparse polynomial chaos expansions. J. Guidance Control Dyn. 38(8), 1–13 (2015)

    Article  Google Scholar 

  47. Juditsky, A., Nemirovski, A.: Accuracy guarantees for 1-recovery. IEEE Trans. Inf. Theory 57, 7818–7839 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  48. Juditsky, A., Nemirovski, A.: On verifiable sufficient conditions for sparse signal recovery via 1 minimization. Math. Program. 127(1), 57–88 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  49. Karagiannis, G., Lin, G.: Selection of polynomial chaos bases via Bayesian model uncertainty methods with applications to sparse approximation of PDEs with stochastic inputs. J. Comput. Phys. 259, 114–134 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  50. Karagiannis, G., Konomi, B., Lin, G.: A Bayesian mixed shrinkage prior procedure for spatial–stochastic basis selection and evaluation of gPC expansions: Applications to elliptic SPDEs. J. Comput. Phys. 284, 528–546 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  51. Khajehnejad, M.A., Xu, W., Avestimehr, A.S., Hassibi, B.: Improved sparse recovery thresholds with two-step reweighted 1 minimization. In: 2010 IEEE International Symposium on Information Theory Proceedings (ISIT), Austin, pp. 1603–1607. IEEE (2010)

    Google Scholar 

  52. Komkov, V., Choi, K., Haug, E.: Design Sensitivity Analysis of Structural Systems, vol. 177. Academic, Orlando (1986)

    MATH  Google Scholar 

  53. Krahmer, F., Ward, R.: Beyond incoherence: stable and robust sampling strategies for compressive imaging. arXiv preprint arXiv:12102380 (2012)

    Google Scholar 

  54. Krasikov, I.: New bounds on the Hermite polynomials. ArXiv Mathematics e-prints math/0401310 (2004)

    Google Scholar 

  55. Ma, X., Zabaras, N.: An efficient Bayesian inference approach to inverse problems based on an adaptive sparse grid collocation method. Inverse Probl. 25, 035,013+ (2009)

    Google Scholar 

  56. Maitre, O.L., Knio, O.: Spectral Methods for Uncertainty Quantification with Applications to Computational Fluid Dynamics. Springer, Dordrecht/New York (2010)

    Book  MATH  Google Scholar 

  57. Mathelin, L., Gallivan, K.: A compressed sensing approach for partial differential equations with random input data. Commun. Comput. Phys. 12, 919–954 (2012)

    Article  MathSciNet  Google Scholar 

  58. Mo, Q., Li, S.: New bounds on the restricted isometry constant δ 2k . Appl. Comput. Harmonic Anal. 31(3), 460–468 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  59. Narayan, A., Zhou, T.: Stochastic collocation on unstructured multivariate meshes. Commun. Comput. Phys. 18, 1–36 (2015)

    Article  MathSciNet  Google Scholar 

  60. Narayan, A., Jakeman, J.D., Zhou, T.: A Christoffel function weighted least squares algorithm for collocation approximations. arXiv preprint arXiv:14124305 (2014)

    Google Scholar 

  61. Needell, D.: Noisy signal recovery via iterative reweighted 1-minimization. In: Proceedings of the Asilomar Conference on Signals, Systems, and Computers, Pacific Grove (2009)

    Book  Google Scholar 

  62. Needell, D., Tropp, J.: CoSaMP: Iterative signal recovery from incomplete and inaccurate samples. Appl. Comput. Harmonic Anal. 26(3), 301–321 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  63. Park, T., Casella, G.: The Bayesian lasso. J. Am. Stat. Assoc. 103(482), 681–686 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  64. Peng, J., Hampton, J., Doostan, A.: A weighted 1-minimization approach for sparse polynomial chaos expansions. J. Comput. Phys. 267, 92–111 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  65. Peng, J., Hampton, J., Doostan, A.: On polynomial chaos expansion via gradient-enhanced 1-minimization. arXiv preprint arXiv:150600343 (2015)

    Google Scholar 

  66. Quéré, P.L.: Accurate solutions to the square thermally driven cavity at high rayleigh number. Comput. Fluids 20(1), 29–41 (1991)

    Article  MATH  Google Scholar 

  67. Rall, L.B.: Automatic Differentiation: Techniques and Applications, vol. 120. Springer, Berlin (1981)

    Book  MATH  Google Scholar 

  68. Rauhut, H.: Compressive sensing and structured random matrices. Theor. Found. Numer. Methods Sparse Recover. 9, 1–92 (2010)

    MathSciNet  MATH  Google Scholar 

  69. Rauhut, H., Ward, R.: Sparse Legendre expansions via 1-minimization. J. Approx. Theory 164(5), 517–533 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  70. Rauhut, H., Ward, R.: Interpolation via weighted minimization. Appl. Comput. Harmonic Anal. 40, 321–351 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  71. Robert, C., Casella, G.: Monte Carlo Statistical Methods. Springer Texts in Statistics. Springer, New York (2004)

    Book  MATH  Google Scholar 

  72. Sargsyan, K., Safta, C., Najm, H., Debusschere, B., Ricciuto, D., Thornton, P.: Dimensionality reduction for complex models via Bayesian compressive sensing. Int. J. Uncertain. Quantif. 4, 63–93 (2013)

    Article  MathSciNet  Google Scholar 

  73. Savin, E., Resmini, A., Peter, J.: Sparse polynomial surrogates for aerodynamic computations with random inputs. arXiv preprint arXiv:150602318 (2015)

    Google Scholar 

  74. Schiavazzi, D., Doostan, A., Iaccarino, G.: Sparse multiresolution regression for uncertainty propagation. Int. J. Uncertain. Quantif. (2014). doi:10.1615/Int.J.UncertaintyQuanti fication.2014010147

    Google Scholar 

  75. Schoutens, W.: Stochastic Processes and Orthogonal Polynomials. Springer, New York (2000)

    Book  MATH  Google Scholar 

  76. Smolyak, S.: Quadrature and interpolation formulas for tensor products of certain classes of functions. Soviet Mathematics, Doklady 4, 240–243 (1963)

    MATH  Google Scholar 

  77. Szegö G (1939) Orthongonal Polynomials. American Mathematical Society, American Mathematical Society

    Google Scholar 

  78. Tang, G., Iaccarino, G.: Subsampled gauss quadrature nodes for estimating polynomial chaos expansions. SIAM/ASA J. Uncertain. Quantif. 2(1), 423–443 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  79. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat.l Soc. (Ser. B) 58, 267–288 (1996)

    Google Scholar 

  80. Tropp, J.: Greed is good: algorithmic results for sparse approximation. IEEE Trans. Inf. Theory 50(10), 2231–2242 (2004). doi:10.1109/TIT.2004.834793

    Article  MathSciNet  MATH  Google Scholar 

  81. Tropp, J.A., Anna, G.C.: Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inf. Theory 53, 4655–4666 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  82. Ward, R.: Compressed sensing with cross validation. IEEE Trans. Inf. Theory 55(12), 5773–5782 (2009)

    Article  MathSciNet  Google Scholar 

  83. West, T., Brune, A., Hosder, S., Johnston, C.: Uncertainty analysis of radiative heating predictions for titan entry. J. Thermophys. Heat Transf. 1–14 (2015)

    Google Scholar 

  84. Xiu, D.: Numerical Methods for Stochastic Computations: A Spectral Method Approach. Princeton University Press, Princeton (2010)

    MATH  Google Scholar 

  85. Xiu, D., Hesthaven, J.: High-order collocation methods for differential equations with random inputs. SIAM J. Sci. Comput. 27(3), 1118–1139 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  86. Xiu, D., Karniadakis, G.: The Wiener-Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 24(2), 619–644 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  87. Xu, W., Khajehnejad, M., Avestimehr, A., Hassibi, B.: Breaking through the thresholds: an analysis for iterative reweighted 1 minimization via the Grassmann Angle Framework (2009). ArXiv e-prints Available from http://arxiv.org/abs/0904.0994

  88. Xu, Z., Zhou, T.: On sparse interpolation and the design of deterministic interpolation points. SIAM J. Sci. Comput. 36(4), A1752–A1769 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  89. Yan, L., Guo, L., Xiu, D.: Stochastic collocation algorithms using 1-minimization. Int. J. Uncertain. Quantif. 2(3), 279–293 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  90. Yang, X., Karniadakis, G.E.: Reweighted 1 minimization method for stochastic elliptic differential equations. J. Comput. Phys. 248, 87–108 (2013)

    Article  MATH  Google Scholar 

  91. Yang, X., Lei, H., Baker, N., Lin, G.: Enhancing sparsity of hermite polynomial expansions by iterative rotations. arXiv preprint arXiv:150604344 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this entry

Cite this entry

Hampton, J., Doostan, A. (2017). Compressive Sampling Methods for Sparse Polynomial Chaos Expansions. In: Ghanem, R., Higdon, D., Owhadi, H. (eds) Handbook of Uncertainty Quantification. Springer, Cham. https://doi.org/10.1007/978-3-319-12385-1_67

Download citation

Publish with us

Policies and ethics