Skip to main content

Variational Methods

  • Reference work entry
  • First Online:
Handbook of Uncertainty Quantification
  • 9220 Accesses

Abstract

This contribution presents derivative-based methods for local sensitivity analysis, called Variational Sensitivity Analysis (VSA). If one defines an output called the response function, its sensitivity to input variations around a nominal value can be studied using derivative (gradient) information. The main issue of VSA is then to provide an efficient way of computing gradients.

This contribution first presents the theoretical grounds of VSA: framework and problem statement and tangent and adjoint methods. Then it covers practical means to compute derivatives, from naive to more sophisticated approaches, discussing their various merits. Finally, applications of VSA are reviewed, and some examples are presented, covering various applications fields: oceanography, glaciology, and meteorology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,099.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ancell, B., Hakim, G.J.: Comparing adjoint- and ensemble-sensitivity analysis with applications to observation targeting. Mon. Weather Rev. 135(12), 4117–4134 (2007)

    Article  Google Scholar 

  2. Ayoub, N.: Estimation of boundary values in a North Atlantic circulation model using an adjoint method. Ocean Model. 12(3–4), 319–347 (2006)

    Article  Google Scholar 

  3. Cacuci, D.G.: Sensitivity and Uncertainty Analysis: Theory. CRC Press, Boca Raton (2005)

    Book  MATH  Google Scholar 

  4. Castaings, W., Dartus, D., Le Dimet, F.X., Saulnier, G.M.: Sensitivity analysis and parameter estimation for distributed hydrological modeling: potential of variational methods. Hydrol. Earth Syst. Sci. 13(4), 503–517 (2009)

    Article  Google Scholar 

  5. Chen, S.G., Wu, C.C., Chen, J.H., Chou, K.H.: Validation and interpretation of adjoint-derived sensitivity steering vector as targeted observation guidance. Mon. Weather Rev. 139, 1608–1625 (2011)

    Article  Google Scholar 

  6. Daescu, D.N., Navon, I.M.: Reduced-order observation sensitivity in 4D-var data assimilation. In: American Meteorological Society 88th AMS Annual Meeting, New Orleans (2008)

    Google Scholar 

  7. Desroziers, G., Camino, J.T., Berre, L.: 4DEnVar: link with 4D state formulation of variational assimilation and different possible implementations. Q. J. R. Meteorol. Soc. 140, 2097–2110 (2014)

    Article  Google Scholar 

  8. Errico, R.M., Vukicevic, T.: Sensitivity analysis using an adjoint of the PSU-NCAR mesoseale model. Mon. Weather Rev. 120(8), 1644–1660 (1992)

    Article  Google Scholar 

  9. Giering, R., Kaminski, T.: Recipes for adjoint code construction. ACM Trans. Math. Softw. 24(4), 437–474 (1998)

    Article  MATH  Google Scholar 

  10. Griewank, A., Walther, A.: Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation. SIAM, Philadelphia (2008)

    Book  MATH  Google Scholar 

  11. Hamby, D.M.: A review of techniques for parameter sensitivity analysis of environmental models. Environ. Monit. Assess. 32(2), 135–154 (1994)

    Article  Google Scholar 

  12. Hascoet, L., Pascual, V.: The Tapenade automatic differentiation tool: principles, model, and specification. ACM Trans. Math. Softw. 39(3), 20 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Heimbach, P., Bugnion, V.: Greenland ice-sheet volume sensitivity to basal, surface and initial conditions derived from an adjoint model. Ann. Glaciol. 50, 67–80 (2009)

    Article  Google Scholar 

  14. Hoover, B.T., Morgan, M.C.: Dynamical sensitivity analysis of tropical cyclone steering using an adjoint model. Mon. Weather Rev. 139, 2761–2775 (2011)

    Article  Google Scholar 

  15. Lauvernet, C., Hascoët, L., Dimet, F.X.L., Baret, F.: Using automatic differentiation to study the sensitivity of a crop model. In: Forth, S., Hovland, P., Phipps, E., Utke, J., Walther, A. (eds.) Recent Advances in Algorithmic Differentiation. Lecture Notes in Computational Science and Engineering, vol. 87, pp. 59–69. Springer, Berlin (2012)

    Chapter  Google Scholar 

  16. Le Dimet, F.X., Ngodock, H.E., Luong, B., Verron, J.: Sensitivity analysis in variational data assimilation. J. Meteorol. Soc. Jpn. Ser. 2, 75, 135–145 (1997)

    Google Scholar 

  17. Lellouche, J.M., Devenon, J.L., Dekeyser, I.: Boundary control of Burgers’ equation—a numerical approach. Comput. Math. Appl. 28(5), 33–34 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  18. Li, S., Petzold, L.: Adjoint sensitivity analysis for time-dependent partial differential equations with adaptive mesh refinement. J. Comput. Phys. 198(1), 310–325 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Liu, C., Xiao, Q., Wang, B.: An ensemble-based four-dimensional variational data assimilation scheme. Part I: technical formulation and preliminary test. Mon. Weather Rev. 136(9), 3363–3373 (2008)

    Google Scholar 

  20. Marotzke, J., Wunsch, C., Giering, R., Zhang, K., Stammer, D., Hill, C., Lee, T.: Construction of the adjoint MIT ocean general circulation model and application to atlantic heat transport sensitivity. J. Geophys. Res. 104(29), 529–29 (1999)

    Google Scholar 

  21. Mu, M., Duan, W., Wang, B.: Conditional nonlinear optimal perturbation and its applications. Nonlinear Process. Geophys. 10(6), 493–501 (2003)

    Article  Google Scholar 

  22. Qin, X., Mu, M.: Influence of conditional nonlinear optimal perturbations sensitivity on typhoon track forecasts. Q.J. R. Meteorol. Soc. 138, 185–197 (2011)

    Google Scholar 

  23. Rivière, O., Lapeyre, G., Talagrand, O.: A novel technique for nonlinear sensitivity analysis: application to moist predictability. Q. J. R. Meteorol. Soc. 135(643), 1520–1537 (2009)

    Article  Google Scholar 

  24. Saltelli, A., Ratto, M., Tarantola, S., Campolongo, F.: Sensitivity analysis for chemical models. Chem. Rev. 105(7), 2811–2828 (2005)

    Article  MATH  Google Scholar 

  25. Sandu, A., Daescu, D.N., Carmichael, G.R.: Direct and adjoint sensitivity analysis of chemical kinetic systems with KPP: Part I—theory and software tools. Atmos. Environ. 37(36), 5083–5096 (2003)

    Article  Google Scholar 

  26. Sandu, A., Daescu, D.N., Carmichael, G.R., Chai, T.: Adjoint sensitivity analysis of regional air quality models. J. Comput. Phys. 204(1), 222–252 (2005)

    Article  MATH  Google Scholar 

  27. Sévellec, F.: Optimal surface salinity perturbations influencing the thermohaline circulation. J. Phys. Oceanogr. 37(12), 2789–2808 (2007)

    Article  Google Scholar 

  28. Sykes, J.F., Wilson, J.L., Andrews, R.W.: Sensitivity analysis for steady state groundwater flow using adjoint operators. Water Resour. Res. 21(3), 359–371 (1985)

    Article  Google Scholar 

  29. Thuburn, J., Haine, T.W.N.: Adjoints of nonoscillatory advection schemes. J. Comput. Phys. 171(2), 616–631 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  30. Vidard, A.: Data assimilation and adjoint methods for geophysical applications. PhD thesis, Université de Grenoble, Habilitation thesis (2012)

    Google Scholar 

  31. Vidard, A., Rémy, E., Greiner, E.: Sensitivity analysis through adjoint method: application to the GLORYS reanalysis. Contrat n∘ 08/D43, Mercator Océan (2011)

    Google Scholar 

  32. Wu, C.C., Chen, J.H., Lin, P.H., Chou, K.H.: Targeted observations of tropical cyclone movement based on the adjoint-derived sensitivity steering vector. J. Atmos. Sci. 64(7), 2611–2626 (2007)

    Article  Google Scholar 

  33. Zhu, Y., Gelaro, R.: Observation sensitivity calculations using the adjoint of the gridpoint statistical interpolation (GSI) analysis system. Mon. Weather Rev. 136(1), 335–351 (2008)

    Article  Google Scholar 

  34. Zou, X., Barcilon, A., Navon, I.M., Whitaker, J., Cacuci, D.G.: An adjoint sensitivity study of blocking in a two-layer isentropic model. Mon. Weather Rev. 121, 2833–2857 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maelle Nodet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this entry

Cite this entry

Nodet, M., Vidard, A. (2017). Variational Methods. In: Ghanem, R., Higdon, D., Owhadi, H. (eds) Handbook of Uncertainty Quantification. Springer, Cham. https://doi.org/10.1007/978-3-319-12385-1_32

Download citation

Publish with us

Policies and ethics