Skip to main content

Method of Distributions for Uncertainty Quantification

  • Reference work entry
  • First Online:
Book cover Handbook of Uncertainty Quantification

Abstract

Parametric uncertainty, considered broadly to include uncertainty in system parameters and driving forces (source terms and initial and boundary conditions), is ubiquitous in mathematical modeling. The method of distributions, which comprises PDF and CDF methods, quantifies parametric uncertainty by deriving deterministic equations for either probability density function (PDF) or cumulative distribution function (CDF) of model outputs. Since it does not rely on finite-term approximations (e.g., a truncated Karhunen-Loève transformation) of random parameter fields, the method of distributions does not suffer from the “curse of dimensionality.” On the contrary, it is exact for a class of nonlinear hyperbolic equations whose coefficients lack spatiotemporal correlation, i.e., exhibit an infinite number of random dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,099.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuous Problems. The Clarendon Press/Oxford University Press, Oxford/New York (2000)

    MATH  Google Scholar 

  2. Arnold, L.: Random Dynamical Systems. Springer, Berlin/New York (1998)

    Book  MATH  Google Scholar 

  3. Benabdallahh, A., Serre, D.: Problèmes aux limites pour des systèmes hyperboliques non linéaires de deux équations à une dimension d’espace. C. R. Acad. Sci. Paris 305, 677–680 (1986)

    Google Scholar 

  4. Bharucha-Reid, A.T. (ed.): Probabilistic Methods in Applied Mathematics. Academic, New York (1968)

    MATH  Google Scholar 

  5. Boso, F., Broyda, S.V., Tartakovsky, D.M.: Cumulative distribution function solutions of advection-reaction equations with uncertain parameters. Proc. R. Soc. A 470(2166), 20140189 (2014)

    Article  Google Scholar 

  6. Broyda, S., Dentz, M., Tartakovsky, D.M.: Probability density functions for advective-reactive transport in radial flow. Stoch. Environ. Res. Risk Assess. 24(7), 985–992 (2010)

    Article  Google Scholar 

  7. Dubois, F., LeFLoch, P.: Boundary conditions for nonlinear hyperbolic systems. J. Differ. Equ. 71, 93–122 (1988)

    Article  MathSciNet  Google Scholar 

  8. Evans, L.C.: Partial Differential Equations, 2nd edn. AMS, Providence (2010)

    MATH  Google Scholar 

  9. Fox, R.F.: Functional calculus approach to stochastic differential equations. Phys. Rev. A 33, 467–476 (1986)

    Article  MathSciNet  Google Scholar 

  10. Fuentes, M.A., Wio, H.S., Toral, R.: Effective Markovian approximation for non-Gaussian noises: a path integral approach. Physica A 303(1–2), 91–104 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gisclon, M.: Etude des conditions aux limites pour un système strictement hyperbolique via l’approximation parabolique. PhD thesis, Université Claude Bernard, Lyon I (France) (1994)

    Google Scholar 

  12. Gisclon, M., Serre, D.: Etude des conditions aux limites pour un système strictement hyperbolique via l’approximation parabolique. C. R. Acad. Sci. Paris 319, 377–382 (1994)

    MATH  Google Scholar 

  13. H\(\ddot{\mbox{ a}}\) nggi, P., Jung, P.: Advances in Chemical Physics, chapter Colored Noise in Dynamical Systems, pp. 239–326. John Wiley & Sons, New York (1995)

    Google Scholar 

  14. Kozin, F.: On the probability densities of the output of some random systems. Trans. ASME Ser. E J. Appl. Mech. 28, 161–164 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kurganov, A., Lin, C.-T.: On the reduction of numerical dissipation in central-upwind schemes. Commun. Comput. Phys. 2, 141–163 (2007)

    MathSciNet  MATH  Google Scholar 

  16. Kurganov, A., Noelle, S., Petrova, G.: Semi-discrete central-upwind scheme for hyperbolic conservation laws and hamilton-jacobi equations. SIAM J. Sci. Comput. 23, 707–740 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kurganov, A., Petrova, G.: A third order semi-discrete genuinely multidimensional central scheme for hyperbolic conservation laws and related problems. Numer. Math. 88, 683–729 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kurganov, A., Tadmor, E.: New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations. J. Comput. Phys. 160, 241–282 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lichtner, P.C., Tartakovsky, D.M.: Stochastic analysis of effective rate constant for heterogeneous reactions. Stoch. Environ. Res. Risk Assess. 17(6), 419–429 (2003)

    Article  MATH  Google Scholar 

  20. Lindenberg, K., West, B.J.: The Nonequilibrium Statistical Mechanics of Open and Closed Systems. VCH Publishers, New York (1990)

    MATH  Google Scholar 

  21. Lundgren, T.S.: Distribution functions in the statistical theory of turbulence. Phys. Fluids 10(5), 969–975 (1967)

    Article  Google Scholar 

  22. Risken, H.: The Fokker-Planck Equation: Methods of Solutions and Applications, 2nd edn. Springer, Berlin/New York (1989)

    Book  MATH  Google Scholar 

  23. Tartakovsky, D.M., Broyda, S.: PDF equations for advective-reactive transport in heterogeneous porous media with uncertain properties. J. Contam. Hydrol. 120–121, 129–140 (2011)

    Article  Google Scholar 

  24. Tartakovsky, D.M., Dentz, M., Lichtner, P.C.: Probability density functions for advective-reactive transport in porous media with uncertain reaction rates. Water Resour. Res. 45, W07414 (2009)

    Article  Google Scholar 

  25. Venturi, D., Karniadakis, G.E.: New evolution equations for the joint response-excitation probability density function of stochastic solutions to first-order nonlinear PDEs. J. Comput. Phys. 231(21), 7450–7474 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Venturi, D., Karniadakis, G.E.: Differential constraints for the probability density function of stochastic solutions to wave equation. Int. J. Uncertain. Quant. 2, 195–213 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Venturi, D., Sapsis, T.P., Cho, H., Karniadakis, G.E.: A computable evolution equation for the joint response-excitation probability density function of stochastic dynamical systems. Proc. R. Soc. A 468(2139), 759–783 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Venturi, D., Tartakovsky, D.M., Tartakovsky, A.M., Karniadakis, G.E.: Exact PDF equations and closure approximations for advective-reactive transport. J. Comput. Phys. 243, 323–343 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wang, P., Tartakovsky, A.M., Tartakovsky, D.M.: Probability density function method for Langevin equations with colored noise. Phys. Rev. Lett. 110(14), 140602 (2013)

    Article  Google Scholar 

  30. Wang, P., Tartakovsky, D.M.: Uncertainty quantification in kinematic-wave models. J. Comput. Phys. 231(23), 7868–7880 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Wang, P., Tartakovsky, D.M., Jarman K.D. Jr., Tartakovsky, A.M.: CDF solutions of Buckley-Leverett equation with uncertain parameters. Multiscale Model. Simul. 11(1), 118–133 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Xiu, D., Karniadakis, G.E.: The Wiener-Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 24, 619–644 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel M. Tartakovsky .

Editor information

Editors and Affiliations

Appendix

Appendix

It follows from (22.11) and the fact that u solves (22.10) that

$$\displaystyle\begin{array}{rcl} I& \equiv & \int \limits _{0}^{\infty }\int \limits _{ -\infty }^{\infty }f_{\mathbf{ u},\epsilon }(\mathbf{U};t) \frac{\partial \phi } {\partial t}(\mathbf{U},t)\,\mathrm{d}\mathbf{U}\,\mathrm{d}t = \mathbb{E}\left [\int \limits _{0}^{\infty }\int \limits _{ -\infty }^{\infty }\eta _{ \epsilon }(\mathbf{U} -\mathbf{u}) \frac{\partial \phi } {\partial t}(\mathbf{U},t)\,\mathrm{d}\mathbf{U}\,\mathrm{d}t\right ] {}\\ & =& \mathbb{E}\left [\int \limits _{0}^{\infty }\int \limits _{ -\infty }^{\infty }\eta _{ \epsilon }'(\mathbf{U} -\mathbf{u})\mathbf{G}(\mathbf{u})\phi (\mathbf{U},t)\,\mathrm{d}\mathbf{U}\,\mathrm{d}t\right ] -\int \limits _{-\infty }^{\infty }\mathbb{E}[\eta _{\epsilon }(\mathbf{U} -\mathbf{u}_{ 0})]\phi (\mathbf{U},0)\,\mathrm{d}\mathbf{U}, {}\\ \end{array}$$

for any \(\phi \in \mathcal{ C\,}_{c}^{1}(\mathbb{R}^{N} \times [0,\infty ))\). Therefore

$$\displaystyle{I =\int \limits _{ 0}^{\infty }\int \limits _{ -\infty }^{\infty }\int \limits _{ -\infty }^{\infty }\eta _{ \epsilon }'(\mathbf{U}-\tilde{\mathbf{u}})\mathbf{G}(\tilde{\mathbf{u}})\phi (\mathbf{U},t)f_{\mathbf{u}}(\tilde{\mathbf{u}};t)\,\mathrm{d}\mathbf{U}\,\mathrm{d}\tilde{\mathbf{u}}\,\mathrm{d}t-\int \limits _{-\infty }^{\infty }f_{\mathbf{ u},\epsilon }(\mathbf{U};0)\phi (\mathbf{U},0)\,\mathrm{d}\mathbf{U}.}$$

Integration by parts in U yields

$$\displaystyle\begin{array}{rcl} I = -\int \limits _{0}^{\infty }\int \limits _{ -\infty }^{\infty }(\eta _{\epsilon } \star \mathbf{G}f_{\mathbf{ u}})(\mathbf{U},t)\nabla _{\mathbf{U}}\phi (\mathbf{U},t)\,\mathrm{d}\mathbf{U}\,\mathrm{d}t -\int \limits _{-\infty }^{\infty }f_{\mathbf{ u},\epsilon }(\mathbf{U};0)\phi (\mathbf{U},0)\,\mathrm{d}\mathbf{U}.& & {}\\ \end{array}$$

By the above definition of I, we have established that, for any \(\phi \in \mathcal{ C\,}_{c}^{1}(\mathbb{R}^{N} \times [0,\infty ))\),

$$\displaystyle\begin{array}{rcl} \int \limits _{0}^{\infty }\int \limits _{ -\infty }^{\infty }f_{\mathbf{ u},\epsilon } \frac{\partial \phi } {\partial t}\mathrm{d}\mathbf{U}\,\mathrm{d}t +\int \limits _{ 0}^{\infty }\int \limits _{ -\infty }^{\infty }(\eta _{\epsilon } \star \mathbf{G}f_{\mathbf{ u}})\nabla _{\mathbf{U}}\phi \,\mathrm{d}\mathbf{U}\,\mathrm{d}t +\int \limits _{ -\infty }^{\infty }f_{\mathbf{ u},\epsilon }(\mathbf{U};0)\phi (\mathbf{U},0)\,\mathrm{d}\mathbf{U} = 0.& & {}\\ \end{array}$$

Using standard arguments [1], taking the limit 𝜖 → 0 leads to (22.12).

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this entry

Cite this entry

Tartakovsky, D.M., Gremaud, P.A. (2017). Method of Distributions for Uncertainty Quantification. In: Ghanem, R., Higdon, D., Owhadi, H. (eds) Handbook of Uncertainty Quantification. Springer, Cham. https://doi.org/10.1007/978-3-319-12385-1_27

Download citation

Publish with us

Policies and ethics