Skip to main content

Intrusive Polynomial Chaos Methods for Forward Uncertainty Propagation

  • Reference work entry
  • First Online:

Abstract

Polynomial chaos (PC)-based intrusive methods for uncertainty quantification reformulate the original deterministic model equations to obtain a system of equations for the PC coefficients of the model outputs. This system of equations is larger than the original model equations, but solving it once yields the uncertainty information for all quantities in the model. This chapter gives an overview of the literature on intrusive methods, outlines the approach on a general level, and then applies it to a system of three ordinary differential equations that model a surface reaction system. Common challenges and opportunities for intrusive methods are also highlighted.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   1,099.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   1,399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Augustin, F., Rentrop, P.: Stochastic Galerkin techniques for random ordinary differential equations. Numer. Math. 122(3), 399–419 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Babuška, I., Tempone, R., Zouraris, G.: Galerkin finite element approximations of stochastic elliptic partial differential equations. SIAM J. Numer. Anal. 42(2), 800–825 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Babuška, I., Tempone, R., Zouraris, G.: Solving elliptic boundary value problems with uncertain coefficients by the finite element method: the stochastic formulation. Comput Methods Appl. Mech. Eng. 194, 1251–1294 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Beran, P.S., Pettit, C.L., Millman, D.R.: Uncertainty quantification of limit-cycle oscillations. J. Comput. Phys. 217(1), 217–47 (2006). doi:10.1016/j.jcp.2006.03.038

    Article  MATH  Google Scholar 

  5. Chen, Q.Y., Gottlieb, D., Hesthaven, J.: Uncertainty analysis for the steady-state flows in a dual throat nozzle. J. Comput. Phys. 204, 378–398 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Deb, M.K., Babuška, I., Oden, J.: Solution of stochastic partial differential equations using Galerkin finite element techniques. Comput. Methods Appl. Mech. Eng. 190, 6359–6372 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Debusschere, B., Najm, H., Matta, A., Knio, O., Ghanem, R., Le Maître, O.: Protein labeling reactions in electrochemical microchannel flow: numerical simulation and uncertainty propagation. Phys. Fluids 15(8), 2238–2250 (2003)

    Article  MATH  Google Scholar 

  8. Debusschere, B., Najm, H., Pébay, P., Knio, O., Ghanem, R., Le Maître, O.: Numerical challenges in the use of polynomial chaos representations for stochastic processes. SIAM J. Sci. Comput. 26(2), 698–719 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Debusschere, B., Sargsyan, K., Safta, C., Chowdhary, K.: UQ Toolkit. http://www.sandia.gov/UQToolkit (2015)

  10. Elman, H.C., Miller, C.W., Phipps, E.T., Tuminaro, R.S.: Assessment of collocation and Galerkin approaches to linear diffusion equations with random data. Int. J. Uncertain. Quantif. 1(1), 19–33 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ernst, O., Mugler, A., Starkloff, H.J., Ullmann, E.: On the convergence of generalized polynomial chaos expansions. ESAIM: Math. Model. Numer. Anal. 46, 317–339 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ghanem, R., Dham, S.: Stochastic finite element analysis for multiphase flow in heterogeneous porous media. Transp. Porous Media 32, 239–262 (1998)

    Article  MathSciNet  Google Scholar 

  13. Ghanem, R., Spanos, P.: Stochastic Finite Elements: A Spectral Approach. Springer, New York (1991)

    Book  MATH  Google Scholar 

  14. Knio, O., Le Maître, O.: Uncertainty propagation in CFD using polynomial chaos decomposition. Fluid Dyn. Res. 38(9), 616–40 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Le Maître, O., Knio, O., Najm, H., Ghanem, R.: A stochastic projection method for fluid flow I. Basic formulation. J. Comput. Phys. 173, 481–511 (2001)

    MathSciNet  MATH  Google Scholar 

  16. Le Maître, O., Reagan, M., Najm, H., Ghanem, R., Knio, O.: A stochastic projection method for fluid flow II. Random process. J. Comput. Phys. 181, 9–44 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Le Maître, O., Knio, O., Debusschere, B., Najm, H., Ghanem, R.: A multigrid solver for two-dimensional stochastic diffusion equations. Comput. Methods Appl Mech. Eng. 192, 4723–4744 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Le Maître, O., Ghanem, R., Knio, O., Najm, H.: Uncertainty propagation using Wiener-Haar expansions. J. Comput. Phys. 197(1), 28–57 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Le Maître, O., Najm, H., Ghanem, R., Knio, O.: Multi-resolution analysis of Wiener-type uncertainty propagation schemes. J. Comput. Phys. 197, 502–531 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Le Maître, O., Reagan, M., Debusschere, B., Najm, H., Ghanem, R., Knio, O.: Natural convection in a closed cavity under stochastic, non-Boussinesq conditions. SIAM J. Sci. Comput. 26(2), 375–394 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Le Maître, O., Najm, H., Pébay P, Ghanem, R., Knio, O.: Multi-resolution analysis scheme for uncertainty quantification in chemical systems. SIAM J. Sci. Comput. 29(2), 864–889 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Le Maitre, O.P., Mathelin, L., Knio, O.M., Hussaini, M.Y.: Asynchronous time integration for polynomial chaos expansion of uncertain periodic dynamics. Discret. Contin. Dyn. Syst. 28(1), 199–226 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lucor, D., Karniadakis, G.: Noisy inflows cause a shedding-mode switching in flow past an oscillating cylinder. Phys. Rev. Lett. 92(15), 154501 (2004)

    Article  Google Scholar 

  24. Ma, X., Zabaras, N.: A stabilized stochastic finite element second-order projection method for modeling natural convection in random porous media. J. Comput. Phys. 227(18), 8448–8471 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Makeev, A.G., Maroudas, D., Kevrekidis, I.G.: “Coarse” stability and bifurcation analysis using stochastic simulators: kinetic Monte Carlo examples. J. Chem. Phys. 116(23), 10,083 (2002)

    Article  Google Scholar 

  26. Marzouk, Y.M., Najm, H.N.: Dimensionality reduction and polynomial chaos acceleration of Bayesian inference in inverse problems. J. Comput. Phys. 228(6), 1862–1902 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Matthies, H.G., Keese, A.: Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations. Comput. Methods Appl. Mech. Eng. 194, 1295–1331 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Millman, D., King, P., Maple, R., Beran, P., Chilton, L.: Uncertainty quantification with a B-spline stochastic projection. AIAA J. 44(8), 1845–1853 (2006)

    Article  Google Scholar 

  29. Najm, H.: Uncertainty quantification and polynomial chaos techniques in computational fluid dynamics. Ann. Rev. Fluid Mech. 41(1), 35–52 (2009). doi:10.1146/annurev.fluid.010908.165248

    Article  MathSciNet  MATH  Google Scholar 

  30. Najm, H., Valorani, M.: Enforcing positivity in intrusive PC-UQ methods for reactive ODE systems. J. Comput. Phys. 270, 544–569 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. Narayanan, V., Zabaras, N.: Variational multiscale stabilized FEM formulations for transport equations: stochastic advection-diffusion and incompressible stochastic Navier-Stokes equations. J. Comput. Phys. 202(1), 94–133 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  32. Pawlowski, R.P., Phipps, E.T., Salinger, A.G.: Automating embedded analysis capabilities and managing software complexity in multiphysics simulation, Part I: Template-based generic programming. Sci. Program. 20(2), 197–219 (2012). doi:10.3233/SPR-2012-0350, arXiv:1205.3952v1

    Google Scholar 

  33. Pawlowski, R.P., Phipps, E.T., Salinger, A.G., Owen, S.J., Siefert, C.M., Staten, M.L.: Automating embedded analysis capabilities and managing software complexity in multiphysics simulation part II: application to partial differential equations. Sci. Program. 20(3), 327–345 (2012). doi:10.3233/SPR-2012-0351, arXiv:1205.3952v1

    Google Scholar 

  34. Perez, R., Walters, R.: An implicit polynomial chaos formulation for the euler equations. In: Paper AIAA 2005-1406, 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno (2005)

    Google Scholar 

  35. Pettersson, M.P., Iaccarino, G., Nordström, J.: Polynomial Chaos Methods for Hyperbolic Partial Differential Equations. Numerical Techniques for Fluid Dynamics Problems in the Presence of Uncertainties. Springer, Cham (2015)

    Book  MATH  Google Scholar 

  36. Pettersson, P., Nordström, J., Iaccarino, G.: Boundary procedures for the time-dependent Burgers’ equation under uncertainty. Acta Math. Sci. 30(2), 539–550 (2010). doi:10.1016/S0252-9602(10)60061-6

    Article  MathSciNet  MATH  Google Scholar 

  37. Pettersson, P., Iaccarino, G., Nordström, J.: A stochastic Galerkin method for the Euler equations with Roe variable transformation. J. Comput. Phys. 257(PA), 481–500 (2014)

    Google Scholar 

  38. Pettit, C.L., Beran, P.S.: Spectral and multiresolution wiener expansions of oscillatory stochastic processes. J. Sound Vib. 294(4/5):752–779 (2006). doi:10.1016/j.jsv.2005.12.043

    Article  Google Scholar 

  39. Phipps, E.: Stokhos. https://trilinos.org/packages/stokhos/ (2015). Accessed 9 Sept 2015

  40. Phipps, E., Hu, J., Ostien, J.: Exploring emerging manycore architectures for uncertainty quantification through embedded stochastic Galerkin methods. Int. J. Comput. Math. 1–23 (2013). doi:10.1080/00207160.2013.840722

    Google Scholar 

  41. Powell, C.E., Elman, H.C.: Block-diagonal preconditioning for spectral stochastic finite-element systems. IMA J. Numer. Anal. 29(2), 350–375 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  42. Reagan, M., Najm, H., Debusschere, B., Le Maître O, Knio, O., Ghanem, R.: Spectral stochastic uncertainty quantification in chemical systems. Combust. Theory Model. 8, 607–632 (2004)

    Article  MATH  Google Scholar 

  43. Sargsyan, K., Debusschere, B., Najm, H., Marzouk, Y.: Bayesian inference of spectral expansions for predictability assessment in stochastic reaction networks. J. Comput. Theor. Nanosci. 6(10), 2283–2297 (2009)

    Article  Google Scholar 

  44. Schwab, C., Todor, R.: Sparse finite elements for stochastic elliptic problems. Numer. Math. 95, 707–734 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  45. Sonday, B., Berry, R., Najm, H., Debusschere, B.: Eigenvalues of the Jacobian of a Galerkin-projected uncertain ODE system. SIAM J. Sci. Comput. 33, 1212–1233 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  46. Todor, R., Schwab, C.: Convergence rates for sparse chaos approximations of elliptic problems with stochastic coefficients. IMA J. Numer. Anal. 27, 232–261 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  47. Tryoen, J., Le Maître, O., Ndjinga, M., Ern, A.: Intrusive Galerkin methods with upwinding for uncertain nonlinear hyperbolic systems. J. Comput. Phys. 229(18), 6485–6511 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  48. Tryoen, J., Le Maître, O., Ndjinga, M., Ern, A.: Roe solver with entropy corrector for uncertain hyperbolic systems. J. Comput. Appl. Math. 235(2), 491–506 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  49. Tryoen, J., Maître, O.L., Ern, A.: Adaptive anisotropic spectral stochastic methods for uncertain scalar conservation laws. SIAM J. Sci. Comput. 34(5), A2459–A2481 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  50. Vigil, R., Willmore, F.: Oscillatory dynamics in a heterogeneous surface reaction: Breakdown of the mean-field approximation. Phys. Rev. E. Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 54(2), 1225–1231 (1996)

    Google Scholar 

  51. Villegas, M., Augustin, F., Gilg, A., Hmaidi, A., Wever, U.: Application of the Polynomial Chaos Expansion to the simulation of chemical reactors with uncertainties. Math. Comput. Simul. 82(5), 805–817 (2012). doi:10.1016/j.matcom.2011.12.001

    Article  MathSciNet  MATH  Google Scholar 

  52. Wan, X., Karniadakis, G.: Long-term behavior of polynomial chaos in stochastic flow simulations. Comput. Methods Appl. Mech. Eng. 195(2006), 5582–5596 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  53. Wan, X., Karniadakis, G.: Multi-element generalized polynomial chaos for arbitrary probability measures. SIAM J. Sci. Comput. 28(3), 901–928 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  54. Wan, X., Karniadakis, G.E.: An adaptive multi-element generalized polynomial chaos method for stochastic differential equations. J. Comput. Phys. 209, 617–642 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  55. Wan, X., Xiu, D., Karniadakis, G.: Stochastic solutions for the two-dimensional advection-diffusion equation. SIAM J. Sci. Comput. 26(2), 578–590 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  56. Wiener, N.: The homogeneous chaos. Am. J. Math. 60, 897–936. doi:10.2307/2371268 (1938)

    Article  MathSciNet  MATH  Google Scholar 

  57. Xiu, D., Karniadakis, G.: The Wiener-Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 24(2), 619–644 (2002). doi:10.1137/S1064827501387826

    Article  MathSciNet  MATH  Google Scholar 

  58. Xiu, D., Karniadakis, G.: Modeling uncertainty in flow simulations via generalized polynomial chaos. J. Comput. Phys. 187, 137–167 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  59. Xiu, D., Karniadakis, G.: A new stochastic approach to transient heat conduction modeling with uncertainty. Int. J. Heat Mass Transf. 46(24), 4681–4693 (2003)

    Article  MATH  Google Scholar 

  60. Xiu, D., Lucor, D., Su, C.H., Karniadakis, G.: Stochastic modeling of flow-structure interactions using generalized polynomial chaos. ASME J. Fluids Eng. 124, 51–59 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bert Debusschere .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland (outside the USA)

About this entry

Cite this entry

Debusschere, B. (2017). Intrusive Polynomial Chaos Methods for Forward Uncertainty Propagation. In: Ghanem, R., Higdon, D., Owhadi, H. (eds) Handbook of Uncertainty Quantification. Springer, Cham. https://doi.org/10.1007/978-3-319-12385-1_19

Download citation

Publish with us

Policies and ethics