Skip to main content

Multiresolution Analysis for Uncertainty Quantification

  • Reference work entry
  • First Online:
Handbook of Uncertainty Quantification

Abstract

We survey the application of multiresolution analysis (MRA) methods in uncertainty propagation and quantification problems. The methods are based on the representation of uncertain quantities in terms of a series of orthogonal multiwavelet basis functions. The unknown coefficients in this expansion are then determined through a Galerkin formalism. This is achieved by injecting the multiwavelet representations into the governing system of equations and exploiting the orthogonality of the basis in order to derive suitable evolution equations for the coefficients. Solution of this system of equations yields the evolution of the uncertain solution, expressed in a format that readily affords the extraction of various properties. One of the main features in using multiresolution representations is their natural ability to accommodate steep or discontinuous dependence of the solution on the random inputs, combined with the ability to dynamically adapt the resolution, including basis enrichment and reduction, namely, following the evolution of the surfaces of steep variation or discontinuity. These capabilities are illustrated in light of simulations of simple dynamical system exhibiting a bifurcation and more complex applications to a traffic problem and wave propagation in gas dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,099.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chorin, A.J.: Gaussian fields and random flow. J. Fluid Mech. 63, 21–32 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  2. Meecham, W.C., Jeng, D.T.: Use of the Wiener-Hermite expansion for nearly normal turbulence. J. Fluid Mech. 32, 225 (1968)

    Article  MATH  Google Scholar 

  3. Le Maître, O., Knio, O., Najm, H., Ghanem, R.: Uncertainty propagation using Wiener-Haar expansions. J. Comput. Phys. 197(1), 28–57 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Le Maître, O.P., Najm, H.N., Ghanem, R.G., Knio, O.M.: Multi-resolution analysis of Wiener-type uncertainty propagation schemes. J. Comput. Phys. 197(2), 502–531 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Le Maître, O.P., Najm, H.N., Pébay, P.P., Ghanem, R.G., Knio, O.M.: Multi-resolution-analysis scheme for uncertainty quantification in chemical systems. SIAM J. Sci. Comput. 29(2), 864–889 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Le Maître, O., Knio, O.: Spectral Methods for Uncertainty Quantification. Scientific Computation. Springer, Dordrecht/New York (2010)

    Book  MATH  Google Scholar 

  7. Gorodetsky, A., Marzouk, Y.: Efficient localization of discontinuities in complex computational simulations. SIAM J. Sci. Comput. 36, A2584–A2610 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Beran, P.S., Pettit, C.L., Millman, D.R.: Uncertainty quantification of limit-cycle oscillations. J. Comput. Phys. 217, 217–247 (2006)

    Article  MATH  Google Scholar 

  9. Pettit, C.L., Beran, P.S.: Spectral and multiresolution Wiener expansions of oscillatory stochastic processes. J. Sound Vib. 294, 752–779 (2006)

    Article  Google Scholar 

  10. Tryoen, J., Le Maître, O., Ndjinga, M., Ern, A.: Multi-resolution analysis and upwinding for uncertain nonlinear hyperbolic systems. J. Comput. Phys. 228, 6485–6511 (2010)

    Article  MATH  Google Scholar 

  11. Tryoen, J., Le Maître, O., Ern, A.: Adaptive anisotropic spectral stochastic methods for uncertain scalar conservation laws. SIAM J. Sci. Comput. 34, 2459–2481 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ren, X., Wu, W., Xanthis, L.S.: A dynamically adaptive wavelet approach to stochastic computations based on polynomial chaos – capturing all scales of random modes on independent grids. J. Comput. Phys. 230, 7332–7346 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Sahai, T., Pasini, J.M.: Uncertainty quantification in hybrid dynamical systems. J. Comput. Phys. 237, 411–427 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Pettersson, P., Iaccarino, G., Nordström, J.: A stochastic galerkin method for the Euler equations with roe variable transformation. J. Comput. Phys. 257, 481–500 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ghanem, R., Spanos, P.: Stochastic Finite Elements: A Spectral Approach. Dover, Minneola (2003)

    MATH  Google Scholar 

  16. Alpert, B.K.: A class of bases in L 2 for the sparse representation of integral operators. J. Math. Anal. 24, 246–262 (1993)

    MathSciNet  MATH  Google Scholar 

  17. Strang, G.: Introduction to Applied Mathematics. Wellesley-Cambridge Press, Wellesley (1986)

    MATH  Google Scholar 

  18. Cohen, A., Müller, S., Postel, M., Kaber, S.: Fully adaptive multiresolution schemes for conservation laws. Math. Comput. 72, 183–225 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Cohen, A., Dahmen, W., DeVore, R.: Adaptive wavelet techniques in numerical simulation. In: Stein, E., de Borst, R., Hughes, T.J.R. (eds.) Encyclopedia of Computational Mechanics, vol. 1, pp. 157–197. Wiley, Chichester (2004)

    Google Scholar 

  20. Harten, A.: Multiresolution algorithms for the numerical solution of hyperbolic conservation laws. Commun. Pure Appl. Math. 48(12), 1305–1342 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  21. Le Maître, O.P., Knio, O.M.: Spectral Methods for Uncertainty Quantification. Springer, Dordrecht/New York (2010)

    Book  MATH  Google Scholar 

  22. Tryoen, J., Le Maître, O., Ndjinga M., Ern, A.: Intrusive projection methods with upwinding for uncertain nonlinear hyperbolic systems. J. Comput. Phys. 228(18), 6485–6511 (2010)

    Article  MATH  Google Scholar 

  23. Tryoen, J., Le Maître, O., Ndjinga, M., Ern, A.: Roe solver with entropy corrector for uncertain nonlinear hyperbolic systems. J. Comput. Appl. Math. 235(2), 491–506 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Crestaux, T., Le Maître, O.P., Martinez, J.M.: Polynomial chaos expansion for sensitivity analysis. Reliab. Eng. Syst. Saf. 94(7), 1161–1172 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Dr. Alexandre Ern and Dr. Julie Tryoen for their helpful discussions and for their contributions to the work presented in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier P. Le Maı̂tre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this entry

Cite this entry

Le Maı̂tre, O.P., Knio, O.M. (2017). Multiresolution Analysis for Uncertainty Quantification. In: Ghanem, R., Higdon, D., Owhadi, H. (eds) Handbook of Uncertainty Quantification. Springer, Cham. https://doi.org/10.1007/978-3-319-12385-1_18

Download citation

Publish with us

Policies and ethics