Skip to main content

Automotive RADAR

  • Reference work entry
  • First Online:

Abstract

RADAR sensors are used in many driver assistance systems. We could ask whether RADAR for automobiles is similar to RADAR used in aircraft or military applications. The answer would be yes and no: yes, because the basic physical principles are valid for all domains, and no, because the requirements are very different. Whereas sometimes the requirements are less ambitious, enabling new concepts to be implemented, in other aspects, the requirements are higher due to the more complex traffic environment. The fundamentals of RADAR technology laid out in this chapter give an understanding of how RADAR works in typical automotive applications and why principle limitations define the performance. At the end of the chapter, the current technology of automotive RADAR is demonstrated by examples from industry, including their specifications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Classen T, Wilhelm U, Kornhaas R, Klar M, Lucas B (2012) Systemarchitektur für eine 360 Grad Fahrerassistenzsensorik (System architecture for a 360 degrees driver assistance sensor system), Tagungsband 8. UniDAS Workshop Fahrerassistenzsysteme

    Google Scholar 

  • Diewald F (2013) (Object classification and free space detection on the basis of imaging radar sensors for the perception of the surroundings), Dissertation Ulm University Ulm

    Google Scholar 

  • Diewald F, Klappstein J, Sarholz F, Dickmann J, Dietmayer K (2011) Radar-interference-based bridge identification for collision avoidance systems. In: Proceedings IEEE intelligent vehicles conference 2011, Baden-Baden

    Google Scholar 

  • ETSI EN 302 858–1 V1.3.1 (2013) Electromagnetic compatibility and Radio spectrum Matters (ERM); Road Transport and Traffic Telematics (RTTT); Automotive radar equipment operating in the 24,05 GHz up to 24,25 GHz or 24,50 GHz frequency range; Part 1: Technical characteristics and test methods, http://www.etsi.org/deliver/etsi_en/302800_302899/30285801/01.03.01_60/en_30285801v010301p.pdf (2013–11)

  • Fonck KH (1955) Radar bremst bei Gefahr (Radar brakes when in danger). Auto Motor Sport Heft 22:30

    Google Scholar 

  • German Federal Network Agency (2005) SSB LA 144 – Schnittstellenbeschreibung für Kraftfahrzeug-Kurzstreckenradare (Short Range Radar, SRR) (Interface description for short range radars on motor vehicles), July 2005

    Google Scholar 

  • Heidenreich P (2012) Antenna array processing: autocalibration and fast high-resolution methods for automotive radar, Dissertation Technische Universität Darmstadt

    Google Scholar 

  • Hildebrandt J, Kunert M, Lucas B, Classen T (2013) Sensor setups for future driver assistance and automated driving. In: Proceedings IWPC Frankfurt, Germany

    Google Scholar 

  • Koelen C (2012) Multiple target identification and azimuth angle resolution based on an automotive radar, Dissertation TU Hamburg-Harburg, Shaker Verlag

    Google Scholar 

  • Kühnke L (2003) 2nd generation radar based ACC – a system overview, Workshop on environmental sensor systems for automotive applications, European Microwave Week, Munich, Oct 2003

    Google Scholar 

  • Kühnle G, Mayer H, Olbrich H, Swoboda HC (2002) Low-cost long-range-radar für zukünftige Fahrerassistenzsysteme. (Low cost long range radar for future driver assistance systems) Aachener Kolloquium Fahrzeug- und Motorentechnik 2002, p 561

    Google Scholar 

  • Lucas B, Held R, Duba GP, Maurer M, Klar M, Freundt D (2008) Frontsensorsystem mit Doppel Long Range Radar, (Front sensor system with dual long range radar) 5. Workshop Fahrerassistenzsysteme (Workshop Driver Assistance Systems), Walting

    Google Scholar 

  • Ludloff A (2008) Praxiswissen Radar und Radarsignalverarbeitung (Practise knowledge radar and radar signal processing), 4th edn. Vieweg + Teubner Verlag, Wiesbaden

    Google Scholar 

  • Massen J, Möller U (2012) Final report of BMBF project: “RoCC” radar-on-chip for cars – Teilvorhaben Continental 79 GHz SiGe Nahbereichsradarsensorik (− Part Continental 79 GHz SiGe short range radar sensors), Förderkennzeichen 13N9824 (Reference number)

    Google Scholar 

  • Meinecke MM, Rohling H (2000) Combination of LFMCW and FSK modulation principles for automotive radar systems. German Radar Symposium GRS2000, Berlin

    Google Scholar 

  • MOSARIM (2013) More safety for all by radar interference mitigation, EU-Projekt 248231, 2010–2012. Accessed Aug 2013

    Google Scholar 

  • Schneider R (1998) Modellierung der Wellenausbreitung für ein bildgebendes Radar (Modelling of wave propagation for an imaging radar), Dissertation Universität Karlsruhe

    Google Scholar 

  • Schubert E, Kunert M, Menzel W, Fortuny-Guasch J, Chareau JM (2013) Human RCS measurements and dummy requirements for the assessment of radar based active pedestrian safety systems, International Radar Symposium IRS

    Google Scholar 

  • Skolnik M (2008) Radar handbook. Introduction to radar systems, 3rd edn. McGraw-Hill, New York

    Google Scholar 

  • Stoica P, Moses RL (2005) Spectral analysis of signals. Prentice Hall, Upper Saddle River

    MATH  Google Scholar 

  • TC204/WG14, ISO (2008) ISO 22179 Intelligent transport systems – full speed range adaptive cruise control (FSRA) systems – performance requirements and test procedures

    Google Scholar 

  • TC208/WG14, ISO (2002) ISO 15622 (transport information and control systems – adaptive cruise control systems – performance requirements and test procedures)

    Google Scholar 

  • Wintermantel M (2010) Radarsystem mit Elevationsmessfähigkeit (Radar system with elevation measurement capability), patent application WO2010/000254 A2

    Google Scholar 

  • Wolff C (2014) Radargrundlagen – Winkelreflektor (Radar fundamentals – Angle reflector), http://www.radartutorial.eu/bauteile/bt47.de.html. Accessed Nov 2014

Download references

Acknowledgment

The author would like to thank Dr. Hermann Buddendick of Bosch, Dr. Markus Wintermantel of Continental, Martin Mühlenberg of Hella, Dr. Alois Seewald of TRW, and Dr. Urs Lübbert of Valeo for providing their expertise and for the technical diagrams.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hermann Winner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Winner, H. (2016). Automotive RADAR. In: Winner, H., Hakuli, S., Lotz, F., Singer, C. (eds) Handbook of Driver Assistance Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-12352-3_17

Download citation

Publish with us

Policies and ethics