Encyclopedia of Engineering Geology

Living Edition
| Editors: Peter Bobrowsky, Brian Marker

Lacustrine Deposits

  • G. Vessia
  • D. Di Curzio
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-12127-7_179-1



Lakes are dynamic and complex systems, whose depositional processes and sedimentation are affected by climatic and tectonic events (Scott et al. 2012 and the references herein). In addition, the great physicochemical variability among lakes, in terms of origin, size, morphology, catchment size, and water biochemistry influence the nature and the rate of lacustrine deposits ’ formation (Schnurrenberger et al. 2003). The lake system , in comparison with other depositional environments such as rivers, is characterized by low energy (Rust 1982). This depositional condition allows the fine particles to settle out with a variable organic component, making lacustrine sediments prevalently characterized by silt, fine sand, and clay mixtures . Nevertheless, near the margin, the lake system presents higher-energy depositional environments, such as alluvial and fluvial-lacustrine features (i.e., alluvial fans, alluvial floodplain and deltas). For these reasons,...

This is a preview of subscription content, log in to check access.


  1. Boncio P, Amoroso S, Vessia G, Francescone M, Nardone M, Monaco P, Famiani D, Di Naccio D, Mercuri A, Manuel MR, Galadini F, Milana G (2017) Evaluation of liquefaction potential in an intermountain Quaternary lacustrine basin (Fucino basin, central Italy). Bull Earthq Eng.  https://doi.org/10.1007/s10518-017-0201-z
  2. Calabresi G, Manfredini G (1976) Terreni coesivi poco consistenti in Italia. Rivista Italiana di Geotecnica 1:49–64 (in italian)Google Scholar
  3. Chapuis RP (2012) Predicting the saturated hydraulic conductivity of soils: a review. Bull Eng Geol Environ 71:401–434CrossRefGoogle Scholar
  4. Coulomb CA (1776) Sur une application des regles maximis et minimis a quelques problems de statique, relatives a l’architecture. Acad Sci Paris Mem Math Phys 7:343–382Google Scholar
  5. Desiderio G, Folchi Vici D’Arcevia C, Nanni T, Rusi S (2012) Hydrogeological mapping of the highly anthropogenically influenced Peligna Valley intramontane basin (Central Italy). J Maps 8(2):165–168.  https://doi.org/10.1080/17445647.2012.680778 CrossRefGoogle Scholar
  6. Fredlund DG (1975) Engineering properties of expansive clays. In: Proceedings of the seminar on shallow foundations on expansive clays, Regina, Saskatchewan, Canada, 60ppGoogle Scholar
  7. Nishida Y, Nakagawa S (1969) Water permeability and plastic index of soils. In: Proceedings of IASH-UNESCO symposium Tokyo, Pub 89, pp 573–578Google Scholar
  8. Rodríguez-Rebolledo JF, Auvinet-Guichard GY, Martínez-Carvajal HE (2015) Settlement analysis of friction piles in consolidating soft soils. DYNA 82(192):211–220.  https://doi.org/10.15446/dyna.v82n192.47752 CrossRefGoogle Scholar
  9. Rust BR (1982) Sedimentation in fluvial and lacustrine environments. Hydrobiologia 91:59–70CrossRefGoogle Scholar
  10. Schnurrenberger D, Russell J, Kelts K (2003) Classification of lacustrine sediments based on sedimentary components. J Paleolimnol 29:141–154CrossRefGoogle Scholar
  11. Scott JJ, Buatois LA, Mangano GM (2012) Chapter 13: Lacustrine environments. In: Developments in sedimentology, vol 64. Elsevier B.V., Amsterdam, The Netherlands, pp 379–417.  https://doi.org/10.1016/B978-0-444-53813-0.00013-7
  12. Skempton A.W. (1954) The pore pressure coefficients A and B, Geotechnique 4(4):143–147Google Scholar
  13. Terzaghi K, Peck RB (1948) Soil mechanics in engineering practice. 1st Edition, John Wiley & Sons, New YorkGoogle Scholar
  14. Vessia G, Russo S (2017) Classification of lacustrine sediments based on sedimentary components. Biosyst Eng.  https://doi.org/10.1016/j.biosystemseng.2017.08.023

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Engineering and Geology Department (InGeo)University “G. d’Annunzio” of Chieti-PescaraChieti Scalo/ChietiItaly