Skip to main content

Engineering Geomorphological Mapping

  • Living reference work entry
  • First Online:
Encyclopedia of Engineering Geology

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Definition

Engineering geomorphic mapping is the process of creating a graphical representation of geomorphic features for an engineering application. The mapping may be used to identify, classify, quantify, and visualize geomorphic features for development planning and site characterization purposes.

Introduction

Geomorphology is the study of landforms and the processes involved in their formation. Geomorphic maps provide a geographically referenced depiction of landforms and surficial processes. Geomorphic maps may be produced for the following reasons:

  • To provide an understanding of the landscape and the processes that formed and continue to modify the landscape

  • To provide a geographically referenced description of the landscape and the identification of problematic landscape features

  • To provide a map of the landscape to be used as the basis for a derivative mapping product (Cooke and Dornkamp 1990)

The engineering geomorphologist situates engineering works within a...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Booth AM, Roering JJ, Perron JT (2009) Automated landslide mapping using spectral analysis and high-resolution topographic data: Puget Sound lowlands, Washington, and Portland Hills, Oregon. Geomorphology 109(3–4):132–147

    Article  Google Scholar 

  • Breiman L (2001) Random forests. Mach Learn 45(1):5–32

    Article  Google Scholar 

  • British Columbia (1997) Terrain classification system for British Columbia. In: Howes DE, Kenk E (ed) MoE manual 10(2), Victoria

    Google Scholar 

  • British Columbia (1999) Mapping and assessing terrain stability guidebook, 2nd addition. Forest Practices Code of British Columbia Act, Operational Planning Regulation, Forest Road Regulation, Woodlot Licence Forest Management Regulation, Victoria

    Google Scholar 

  • Bulmer C, Schmidt MG, Heung B et al (2016) Improved soil mapping in British Columbia, Canada, with legacy soil data and random forest. In: Zhang G, Brus D, Liu F et al (eds) Digital soil mapping across paradigms, scales and boundaries. Springer Singapore, Singapore, pp 291–303

    Chapter  Google Scholar 

  • BUWAL (Bundesamt für Umwelt, Wald und Landschaft) (1995) Symbolbaukasten zur Kartierung der PhÓ“nomene (available in German and French). Mitteilungen des Bundesamtes für Wasser und Geologie 6, 41 pp

    Google Scholar 

  • Cooke RU, Doornkamp JC (1990) Geomorphology in environmental management: a new introduction, 2nd edn. Clarendon Press, Oxford

    Google Scholar 

  • Cruden DM (2003) The shapes of cold, high mountains in sedimentary rocks. Geomorphology 55(1–4):249–261

    Article  Google Scholar 

  • Cruden DM, Varnes DJ (1996) Landslide type and processes. In: Landslides: investigation and mitigation, US Transportation Research Board, Special Report 247, Washington, DC, pp 36–75

    Google Scholar 

  • Dearman WR (1991) Engineering geological mapping. Butterworth-Heinemann, Oxford

    Google Scholar 

  • DeWit PV, Bekker RP (1990) Soil mapping and advisory services Botswana: explanatory note on the land system of Botswana. Food and Agriculture organization of the United Nations, United Nations Development Programme, Government of Botswana, Gabrone

    Google Scholar 

  • Dufresne A, Prager C, Bösmeier A (2016) Insights into rock avalanche emplacement processes from detailed morpho-lithological studies of the Tschirgant deposit (Tyrol, Austria). Earth Surf Process Landf 41(5):587–602

    Article  Google Scholar 

  • Haskins DM, Correll CS, Foster RA, Chatoian JM, Fincher JM, Stenger S, Keys JE, Maxwell JR, King T (1998) A geomorphic classification system. USDA Forest Service: Washington, D.C., 110p

    Google Scholar 

  • Holland SS (1976) Landforms of British Columbia, a physiographic outline. Ministry of Energy and Mines, Victoria

    Google Scholar 

  • J. M. Ryder and Associates (2001) Terrain stability mapping Lillooet forest district. J. M. Ryder and Associates, Terrain Analysis Inc, Vancouver

    Google Scholar 

  • LfU (Bayerisches Landesamt für Umwelt) (2014) Georisiken im Klimawandel – Gefahrenhinweiskarte Alpen und Alpenvorland, Landkreis Traunstein (in German). Druckerei Bayerisches Landesamt für Umwelt, 80 pp

    Google Scholar 

  • Lipovsky PS, Bond JD (compilers) (2014) Yukon digital surficial geology compilation. Yukon Geological Survey. http://www.geology.gov.yk.ca/digital_surficial_data.html. Accessed 14 July 2016

  • Resource Inventory Committee (1996) Guidelines and standards to terrain mapping in British Columbia. Surficial Geology Task Group, Earth Sciences Task Force, Victoria

    Google Scholar 

  • Resources Information Standards Committee (2015) Terrestrial ecosystem information digital data submission standard – draft for field testing: database and GIS data standards. Ministry of Environment Knowledge Management Branch for the Terrestrial Ecosystems Resources Information Standards Committee, Victoria

    Google Scholar 

  • Robb C, Willis I, Arnold N (2015) A semi-automated method for mapping glacial geomorphology tested at Breiðamerkurjökull, Iceland. Remote Sens Environ 163:80–90

    Article  Google Scholar 

  • Schwab JW, Geertsema M (2010) Terrain stability mapping on British Columbia forest lands: an historical perspective. Nat Hazards 53(1):63–75

    Article  Google Scholar 

  • Stumpf A, Kerle N (2011) Object-oriented mapping of landslides using random forests. Remote Sens Environ 115(10):2564–2577

    Article  Google Scholar 

  • Tarolli P, Sofia G, Dalla Fontana G (2012) Geomorphic features extraction from high-resolution topography: landslide crowns and bank erosion. Nat Hazards 61(1):65–83

    Article  Google Scholar 

  • Tiris (Tiroler Rauminformationssysteme) (2015) Laserscanning Land Tirol. https://www.tirol.gv.at/sicherheit/geoinformation/geodaten/laserscandaten/

  • van Asselen S, Seijmonsbergen AC (2006) Expert-driven semi-automated geomorphological mapping for a mountainous area using a laser DTM. Geomorphology 78(3–4):309–320

    Article  Google Scholar 

  • Winthers E, Fallon D, Haglund J, DeMeo T, Nowacki G, Tart D, Ferwerda M, Robertson G, Gallegos A, Rorick A, Cleland DT, Robbie W (2005) Terrestrial ecological unit inventory technical guide. U.S. Department of Agriculture, Forest Service, Washington Office, Ecosystem Management Coordination Staff, Washington, DC

    Google Scholar 

  • Zangerl C, Prager C, Brandner R, Brückl E, Eder S, Fellin W, Tentschert E, Poscher G, Schönlaub H (2008) Methodischer Leitfaden zur prozessorientierten Bearbeitung von Massenbewegungen (in German). GeoAlp 5:1–51

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brendan Miller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Crown Copyright

About this entry

Cite this entry

Miller, B., Filatow, D., Dufresne, A., Geertsema, M., Dinney, M. (2017). Engineering Geomorphological Mapping. In: Bobrowsky, P., Marker, B. (eds) Encyclopedia of Engineering Geology. Encyclopedia of Earth Sciences Series. Springer, Cham. https://doi.org/10.1007/978-3-319-12127-7_108-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12127-7_108-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12127-7

  • Online ISBN: 978-3-319-12127-7

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics