Skip to main content

Circadian Rhythms and Metabolism

  • Reference work entry
  • First Online:
  • 3469 Accesses

Abstract

The circadian system relies on a master clock in the suprachiasmatic nucleus of the hypothalamus (SCN), synchronizing a multitude of brain and peripheral oscillators that set physiological and metabolic functions in phase with the light–dark cycle. The SCN functions as a relay integrating environmental signals before sending appropriate neuronal and hormonal cues to the brain and peripheral tissues to control, among others, sleep/wake and feeding/fasting cycles. Many evidences show that metabolism and circadian system are tightly interconnected. Peripheral oscillators, such as the liver and adipose tissue, can be shifted by mealtime. By contrast, feeding signals do not affect the master clock under light–dark conditions, although nutritional cues affect its functioning under metabolic challenges, such as calorie restriction and high-fat diet. Circadian desynchronization, such as shift work and chronic jet lag, is now recognized as a determinant of metabolic disturbances. Therefore, chronotherapeutic approaches of daily dieting to avoid circadian misalignment are advisable for the management of obesity and type 2 diabetes.

This is a preview of subscription content, log in via an institution.

References

  • Abe M, Herzog ED, Yamazaki S, et al. Circadian rhythms in isolated brain regions. J Neurosci. 2002;22(1):350-356.

    CAS  PubMed  Google Scholar 

  • Ahima RS, Lazar MA. Adipokines and the peripheral and neural control of energy balance. Mol Endocrinol. 2008;22(5):1023-1031.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Akabayashi A, Levin N, Paez X, et al. Hypothalamic neuropeptide Y and its gene expression: relation to light/dark cycle and circulating corticosterone. Mol Cell Neurosci. 1994;5(3):210-218.

    Article  CAS  PubMed  Google Scholar 

  • Ando H, Yanagihara H, Hayashi Y, et al. Rhythmic messenger ribonucleic acid expression of clock genes and adipocytokines in mouse visceral adipose tissue. Endocrinology. 2005;146(12):5631-5636.

    Article  CAS  PubMed  Google Scholar 

  • Ando H, Kumazaki M, Motosugi Y, et al. Impairment of peripheral circadian clocks precedes metabolic abnormalities in ob/ob mice. Endocrinology. 2011;152(4):1347-1354.

    Article  CAS  PubMed  Google Scholar 

  • Asher G, Gatfield D, Stratmann M, et al. SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell. 2008;134(2):317-328.

    Article  CAS  PubMed  Google Scholar 

  • Balland E, Dam J, Langlet F, et al. Hypothalamic tanycytes are an ERK-gated conduit for leptin into the brain. Cell Metab. 2014;19(2):293-301.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Balsalobre A, Damiola F, Schibler U. A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell. 1998;93(6):929-937.

    Article  CAS  PubMed  Google Scholar 

  • Balsalobre A, Brown SA, Marcacci L, et al. Resetting of circadian time in peripheral tissues by glucocorticoid signaling. Science. 2000a;289(5488):2344-2347.

    Article  CAS  PubMed  Google Scholar 

  • Balsalobre A, Marcacci L, Schibler U. Multiple signaling pathways elicit circadian gene expression in cultured Rat-1 fibroblasts. Curr Biol. 2000b;10(20):1291-1294.

    Article  CAS  PubMed  Google Scholar 

  • Bartol-Munier I, Gourmelen S, Pevet P, et al. Combined effects of high-fat feeding and circadian desynchronization. Int J Obes (Lond). 2006;30(1):60-67.

    Article  CAS  Google Scholar 

  • Bechtold DA, Loudon AS. Hypothalamic clocks and rhythms in feeding behaviour. Trends Neurosci. 2013;36(2):74-82.

    Article  CAS  PubMed  Google Scholar 

  • Bouatia-Naji N, Bonnefond A, Cavalcanti-Proenca C, et al. A variant near MTNR1B is associated with increased fasting plasma glucose levels and type 2 diabetes risk. Nat Genet. 2009;41(1):89-94.

    Article  CAS  PubMed  Google Scholar 

  • Brown SA, Zumbrunn G, Fleury-Olela F, et al. Rhythms of mammalian body temperature can sustain peripheral circadian clocks. Curr Biol. 2002;12(18):1574-1583.

    Article  CAS  PubMed  Google Scholar 

  • Brown TM, Coogan AN, Cutler DJ, et al. Electrophysiological actions of orexins on rat suprachiasmatic neurons in vitro. Neurosci Lett. 2008;448(3):273-278.

    Article  CAS  PubMed  Google Scholar 

  • Buhr ED, Yoo SH, Takahashi JS. Temperature as a universal resetting cue for mammalian circadian oscillators. Science. 2010;330(6002):379-385.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Burdakov D, Luckman SM, Verkhratsky A. Glucose-sensing neurons of the hypothalamus. Philos Trans R Soc Lond B Biol Sci. 2005;360(1464):2227-2235.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cailotto C, van Heijningen C, van der Vliet J, et al. Daily rhythms in metabolic liver enzymes and plasma glucose require a balance in the autonomic output to the liver. Endocrinology. 2008;149(4):1914-1925.

    Article  CAS  PubMed  Google Scholar 

  • Caldelas I, Poirel VJ, Sicard B, et al. Circadian profile and photic regulation of clock genes in the suprachiasmatic nucleus of a diurnal mammal Arvicanthis ansorgei. Neuroscience. 2003;116(2):583-591.

    Article  CAS  PubMed  Google Scholar 

  • Canaple L, Rambaud J, Dkhissi-Benyahya O, et al. Reciprocal regulation of brain and muscle Arnt-like protein 1 and peroxisome proliferator-activated receptor alpha defines a novel positive feedback loop in the rodent liver circadian clock. Mol Endocrinol. 2006;20(8):1715-1727.

    Article  CAS  PubMed  Google Scholar 

  • Castillo MR, Hochstetler KJ, Tavernier RJ Jr, et al. Entrainment of the master circadian clock by scheduled feeding. Am J Physiol Regul Integr Comp Physiol. 2004;287(3):R551-R555.

    Article  CAS  PubMed  Google Scholar 

  • Cha MC, Chou CJ, Boozer CN. High-fat diet feeding reduces the diurnal variation of plasma leptin concentration in rats. Metabolism. 2000;49(4):503-507.

    Article  CAS  PubMed  Google Scholar 

  • Challet E. Interactions between light, mealtime and calorie restriction to control daily timing in mammals. J Comp Physiol B. 2010;180(5):631-644.

    Article  PubMed  Google Scholar 

  • Challet E, Pevet P, Malan A. Intergeniculate leaflet lesion and daily rhythms in food-restricted rats fed during daytime. Neurosci Lett. 1996;216(3):214-218.

    Article  CAS  PubMed  Google Scholar 

  • Challet E, Pevet P, Vivien-Roels B, et al. Phase-advanced daily rhythms of melatonin, body temperature, and locomotor activity in food-restricted rats fed during daytime. J Biol Rhythms. 1997;12(1):65-79.

    Article  CAS  PubMed  Google Scholar 

  • Challet E, Losee-Olson S, Turek FW. Reduced glucose availability attenuates circadian responses to light in mice. Am J Physiol Regul Integr Comp Physiol. 1999;276(4 Pt 2):R1063-R1070.

    CAS  Google Scholar 

  • Chellappa SL, Gordijn MC, Cajochen C. Can light make us bright? Effects of light on cognition and sleep. Prog Brain Res. 2011;190:119-133.

    Article  PubMed  Google Scholar 

  • Chou TC, Scammell TE, Gooley JJ, et al. Critical role of dorsomedial hypothalamic nucleus in a wide range of behavioral circadian rhythms. J Neurosci. 2003;23(33):10691-10702.

    CAS  PubMed  Google Scholar 

  • Colles SL, Dixon JB, O’Brien PE. Night eating syndrome and nocturnal snacking: association with obesity, binge eating and psychological distress. Int J Obes (Lond). 2007;31(11):1722-1730.

    Article  CAS  Google Scholar 

  • Cuesta M, Clesse D, Pevet P, et al. From daily behavior to hormonal and neurotransmitters rhythms: comparison between diurnal and nocturnal rat species. Horm Behav. 2009;55(2):338-347.

    Article  CAS  PubMed  Google Scholar 

  • Damiola F, Le Minh N, Preitner N, et al. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev. 2000;14(23):2950-2961.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Delezie J, Dumont S, Dardente H, et al. The nuclear receptor REV-ERBalpha is required for the daily balance of carbohydrate and lipid metabolism. FASEB J. 2012;26(8):3321-3335.

    Article  CAS  PubMed  Google Scholar 

  • Dibner C, Sage D, Unser M, et al. Circadian gene expression is resilient to large fluctuations in overall transcription rates. EMBO J. 2009;28(2):123-134.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dibner C, Schibler U, Albrecht U. The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu Rev Physiol. 2010;72:517-549.

    Article  CAS  PubMed  Google Scholar 

  • Dochi M, Suwazono Y, Sakata K, et al. Shift work is a risk factor for increased total cholesterol level: a 14-year prospective cohort study in 6886 male workers. Occup Environ Med. 2009;66(9):592-597.

    Article  CAS  PubMed  Google Scholar 

  • Eckel-Mahan KL, Patel VR, de Mateo S, et al. Reprogramming of the circadian clock by nutritional challenge. Cell. 2013;155(7):1464-1478.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Feillet CA, Mendoza J, Albrecht U, et al. Forebrain oscillators ticking with different clock hands. Mol Cell Neurosci. 2008;37(2):209-221.

    Article  CAS  PubMed  Google Scholar 

  • Fukagawa K, Sakata T, Yoshimatsu H, et al. Advance shift of feeding circadian rhythm induced by obesity progression in Zucker rats. Am J Physiol Regul Integr Comp Physiol. 1992;263(6 Pt 2):R1169-R1175.

    CAS  Google Scholar 

  • Gachon F, Olela FF, Schaad O, et al. The circadian PAR-domain basic leucine zipper transcription factors DBP, TEF, and HLF modulate basal and inducible xenobiotic detoxification. Cell Metab. 2006;4(1):25-36.

    Article  CAS  PubMed  Google Scholar 

  • Gerhold LM, Horvath TL, Freeman ME. Vasoactive intestinal peptide fibers innervate neuroendocrine dopaminergic neurons. Brain Res. 2001;919(1):48-56.

    Article  CAS  PubMed  Google Scholar 

  • Gervois P, Chopin-Delannoy S, Fadel A, et al. Fibrates increase human REV-ERBalpha expression in liver via a novel peroxisome proliferator-activated receptor response element. Mol Endocrinol. 1999;13(3):400-409.

    CAS  PubMed  Google Scholar 

  • Gimble JM, Sutton GM, Ptitsyn AA, et al. Circadian rhythms in adipose tissue: an update. Curr Opin Clin Nutr Metab Care. 2011;14(6):554-561.

    Article  PubMed  Google Scholar 

  • Golombek DA, Rosenstein RE. Physiology of circadian entrainment. Physiol Rev. 2010;90(3):1063-1102.

    Article  CAS  PubMed  Google Scholar 

  • Grimaldi B, Bellet MM, Katada S, et al. PER2 controls lipid metabolism by direct regulation of PPARgamma. Cell Metab. 2010;12(5):509-520.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Grosbellet E, Gourmelen S, Pevet P, et al. Leptin normalizes photic synchronization in male ob/ob mice, via indirect effects on the suprachiasmatic nucleus. Endocrinology. 2015;156(3):1080-1090.

    Article  CAS  PubMed  Google Scholar 

  • Gu YZ, Hogenesch JB, Bradfield CA. The PAS superfamily: sensors of environmental and developmental signals. Annu Rev Pharmacol Toxicol. 2000;40:519-561.

    Article  CAS  PubMed  Google Scholar 

  • Guan XM, Hess JF, Yu H, et al. Differential expression of mRNA for leptin receptor isoforms in the rat brain. Mol Cell Endocrinol. 1997;133(1):1-7.

    Article  CAS  PubMed  Google Scholar 

  • Guilding C, Piggins HD. Challenging the omnipotence of the suprachiasmatic timekeeper: are circadian oscillators present throughout the mammalian brain? Eur J Neurosci. 2007;25(11):3195-3216.

    Article  PubMed  Google Scholar 

  • Harrington ME. The ventral lateral geniculate nucleus and the intergeniculate leaflet: interrelated structures in the visual and circadian systems. Neurosci Biobehav Rev. 1997;21(5):705-727.

    Article  CAS  PubMed  Google Scholar 

  • Hatori M, Vollmers C, Zarrinpar A, et al. Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metab. 2012;15(6):848-860.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hattar S, Kumar M, Park A, et al. Central projections of melanopsin-expressing retinal ganglion cells in the mouse. J Comp Neurol. 2006;497(3):326-349.

    Article  PubMed Central  PubMed  Google Scholar 

  • Haynes WG, Morgan DA, Walsh SA, et al. Receptor-mediated regional sympathetic nerve activation by leptin. J Clin Invest. 1997;100(2):270-278.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hirota T, Okano T, Kokame K, et al. Glucose down-regulates Per1 and Per2 mRNA levels and induces circadian gene expression in cultured Rat-1 fibroblasts. J Biol Chem. 2002;277(46):44244-44251.

    Article  CAS  PubMed  Google Scholar 

  • Honma KI, Honma S, Hiroshige T. Feeding-associated corticosterone peak in rats under various feeding cycles. Am J Physiol Regul Integr Comp Physiol. 1984;246(5 Pt 2):R721-R726.

    CAS  Google Scholar 

  • Inyushkin AN, Bhumbra GS, Dyball RE. Leptin modulates spike coding in the rat suprachiasmatic nucleus. J Neuroendocrinol. 2009;21(8):705-714.

    Article  CAS  PubMed  Google Scholar 

  • Kahn BB, Alquier T, Carling D, et al. AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab. 2005;1(1):15-25.

    Article  CAS  PubMed  Google Scholar 

  • Kalsbeek A, Fliers E, Romijn JA, et al. The suprachiasmatic nucleus generates the diurnal changes in plasma leptin levels. Endocrinology. 2001;142(6):2677-2685.

    Article  CAS  PubMed  Google Scholar 

  • Kalsbeek A, Palm IF, La Fleur SE, et al. SCN outputs and the hypothalamic balance of life. J Biol Rhythms. 2006;21(6):458-469.

    Article  CAS  PubMed  Google Scholar 

  • Kalsbeek A, Verhagen LA, Schalij I, et al. Opposite actions of hypothalamic vasopressin on circadian corticosterone rhythm in nocturnal versus diurnal species. Eur J Neurosci. 2008;27(4):818-827.

    Article  PubMed  Google Scholar 

  • Kalsbeek A, Yi CX, La Fleur SE, et al. The hypothalamic clock and its control of glucose homeostasis. Trends Endocrinol Metab. 2010;21(7):402-410.

    Article  CAS  PubMed  Google Scholar 

  • Kaneko K, Yamada T, Tsukita S, et al. Obesity alters circadian expressions of molecular clock genes in the brainstem. Brain Res. 2009;1263:58-68.

    Article  CAS  PubMed  Google Scholar 

  • Karlsson BH, Knutsson AK, Lindahl BO, et al. Metabolic disturbances in male workers with rotating three-shift work. Results of the WOLF study. Int Arch Occup Environ Health. 2003;76(6):424-430.

    Article  PubMed  Google Scholar 

  • Kiessling S, Eichele G, Oster H. Adrenal glucocorticoids have a key role in circadian resynchronization in a mouse model of jet lag. J Clin Invest. 2010;120(7):2600-2609.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ko CH, Takahashi JS. Molecular components of the mammalian circadian clock. Hum Mol Genet. 2006;15(Spec No 2):R271-R277.

    Google Scholar 

  • Kohsaka A, Laposky AD, Ramsey KM, et al. High-fat diet disrupts behavioral and molecular circadian rhythms in mice. Cell Metab. 2007;6(5):414-421.

    Article  CAS  PubMed  Google Scholar 

  • Kreier F, Fliers E, Voshol PJ, et al. Selective parasympathetic innervation of subcutaneous and intra-abdominal fat – functional implications. J Clin Invest. 2002;110(9):1243-1250.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kudo T, Akiyama M, Kuriyama K, et al. Night-time restricted feeding normalises clock genes and pai-1 gene expression in the db/db mouse liver. Diabetologia. 2004;47(8):1425-1436.

    Article  CAS  PubMed  Google Scholar 

  • Kurumiya S, Kawamura H. Damped oscillation of the lateral hypothalamic multineuronal activity synchronized to daily feeding schedules in rats with suprachiasmatic nucleus lesions. J Biol Rhythms. 1991;6(2):115-127.

    Article  CAS  PubMed  Google Scholar 

  • La Fleur SE, Kalsbeek A, Wortel J, et al. A suprachiasmatic nucleus generated rhythm in basal glucose concentrations. J Neuroendocrinol. 1999;11(8):643-652.

    Article  PubMed  Google Scholar 

  • Lambert CM, Weaver DR. Peripheral gene expression rhythms in a diurnal rodent. J Biol Rhythms. 2006;21(1):77-79.

    Article  PubMed  Google Scholar 

  • Lamia KA, Storch KF, Weitz CJ. Physiological significance of a peripheral tissue circadian clock. Proc Natl Acad Sci U S A. 2008;105(39):15172-15177.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lamia KA, Sachdeva UM, DiTacchio L, et al. AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation. Science. 2009;326(5951):437-440.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lamont EW, Diaz LR, Barry-Shaw J, et al. Daily restricted feeding rescues a rhythm of period2 expression in the arrhythmic suprachiasmatic nucleus. Neuroscience. 2005;132(2):245-248.

    Article  CAS  PubMed  Google Scholar 

  • Lau P, Nixon SJ, Parton RG, et al. RORalpha regulates the expression of genes involved in lipid homeostasis in skeletal muscle cells: caveolin-3 and CPT-1 are direct targets of ROR. J Biol Chem. 2004;279(35):36828-36840.

    Article  CAS  PubMed  Google Scholar 

  • Le Minh N, Damiola F, Tronche F, et al. Glucocorticoid hormones inhibit food-induced phase-shifting of peripheral circadian oscillators. EMBO J. 2001;20(24):7128-7136.

    Article  PubMed Central  PubMed  Google Scholar 

  • Li AJ, Wiater MF, Oostrom MT, et al. Leptin-sensitive neurons in the arcuate nuclei contribute to endogenous feeding rhythms. Am J Physiol Regul Integr Comp Physiol. 2012a;302(11):R1313-R1326.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li JD, Hu WP, Zhou QY. The circadian output signals from the suprachiasmatic nuclei. Prog Brain Res. 2012b;199:119-127.

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Li S, Liu T, et al. Transcriptional coactivator PGC-1alpha integrates the mammalian clock and energy metabolism. Nature. 2007;447(7143):477-481.

    Article  CAS  PubMed  Google Scholar 

  • Lowden A, Moreno C, Holmback U, et al. Eating and shift work – effects on habits, metabolism and performance. Scand J Work Environ Health. 2010;36(2):150-162.

    Article  PubMed  Google Scholar 

  • Malek ZS, Sage D, Pevet P, et al. Daily rhythm of tryptophan hydroxylase-2 messenger ribonucleic acid within raphe neurons is induced by corticoid daily surge and modulated by enhanced locomotor activity. Endocrinology. 2007;148(11):5165-5172.

    Article  CAS  PubMed  Google Scholar 

  • Marcheva B, Ramsey KM, Buhr ED, et al. Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. Nature. 2010;466(7306):627-631.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mendoza J, Graff C, Dardente H, et al. Feeding cues alter clock gene oscillations and photic responses in the suprachiasmatic nuclei of mice exposed to a light/dark cycle. J Neurosci. 2005;25(6):1514-1522.

    Article  CAS  PubMed  Google Scholar 

  • Mendoza J, Pevet P, Challet E. High-fat feeding alters the clock synchronization to light. J Physiol. 2008;586(Pt 24):5901-5910.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mendoza J, Clesse D, Pevet P, et al. Food-reward signalling in the suprachiasmatic clock. J Neurochem. 2010;112(6):1489-1499.

    Article  CAS  PubMed  Google Scholar 

  • Mendoza J, Lopez-Lopez C, Revel FG, et al. Dimorphic effects of leptin on the circadian and hypocretinergic systems of mice. J Neuroendocrinol. 2011;23(1):28-38.

    Article  CAS  PubMed  Google Scholar 

  • Mistlberger RE. Neurobiology of food anticipatory circadian rhythms. Physiol Behav. 2011;104(4):535-545.

    Article  CAS  PubMed  Google Scholar 

  • Mistlberger RE, Lukman H, Nadeau BG. Circadian rhythms in the Zucker obese rat: assessment and intervention. Appetite. 1998;30(3):255-267.

    Article  CAS  PubMed  Google Scholar 

  • Morin LP. Serotonin and the regulation of mammalian circadian rhythmicity. Ann Med. 1999;31(1):12-33.

    Article  CAS  PubMed  Google Scholar 

  • Mrosovsky N, Edelstein K, Hastings MH, et al. Cycle of period gene expression in a diurnal mammal (Spermophilus tridecemlineatus): implications for nonphotic phase shifting. J Biol Rhythms. 2001;16(5):471-478.

    Article  CAS  PubMed  Google Scholar 

  • Mühlbauer E, Gross E, Labucay K, et al. Loss of melatonin signalling and its impact on circadian rhythms in mouse organs regulating blood glucose. Eur J Pharmacol. 2009;606(1–3):61-71.

    Article  PubMed  CAS  Google Scholar 

  • Mulder H, Nagorny CL, Lyssenko V, et al. Melatonin receptors in pancreatic islets: good morning to a novel type 2 diabetes gene. Diabetologia. 2009;52(7):1240-1249.

    Article  CAS  PubMed  Google Scholar 

  • Nagai K, Nishio T, Nakagawa H, et al. Effect of bilateral lesions of the suprachiasmatic nuclei on the circadian rhythm of food-intake. Brain Res. 1978;142(2):384-389.

    Article  CAS  PubMed  Google Scholar 

  • Nakahata Y, Kaluzova M, Grimaldi B, et al. The NAD + −dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell. 2008;134(2):329-340.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Oishi K, Amagai N, Shirai H, et al. Genome-wide expression analysis reveals 100 adrenal gland-dependent circadian genes in the mouse liver. DNA Res. 2005a;12(3):191-202.

    Article  CAS  PubMed  Google Scholar 

  • Oishi K, Shirai H, Ishida N. CLOCK is involved in the circadian transactivation of peroxisome-proliferator-activated receptor alpha (PPARalpha) in mice. Biochem J. 2005b;386(Pt 3):575-581.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Oster H, Damerow S, Kiessling S, et al. The circadian rhythm of glucocorticoids is regulated by a gating mechanism residing in the adrenal cortical clock. Cell Metab. 2006;4(2):163-173.

    Article  CAS  PubMed  Google Scholar 

  • Otway DT, Frost G, Johnston JD. Circadian rhythmicity in murine pre-adipocyte and adipocyte cells. Chronobiol Int. 2009;26(7):1340-1354.

    Article  CAS  PubMed  Google Scholar 

  • Otway DT, Mantele S, Bretschneider S, et al. Rhythmic diurnal gene expression in human adipose tissue from individuals who are lean, overweight, and type 2 diabetic. Diabetes. 2011;60(5):1577-1581.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Panda S, Antoch MP, Miller BH, et al. Coordinated transcription of key pathways in the mouse by the circadian clock. Cell. 2002;109(3):307-320.

    Article  CAS  PubMed  Google Scholar 

  • Peschke E, Peschke D. Evidence for a circadian rhythm of insulin release from perifused rat pancreatic islets. Diabetologia. 1998;41(9):1085-1092.

    Article  CAS  PubMed  Google Scholar 

  • Pevet P, Challet E. Melatonin: both master clock output and internal time-giver in the circadian clocks network. J Physiol Paris. 2011;105(4–6):170-182.

    Article  PubMed  Google Scholar 

  • Prosser RA, Bergeron HE. Leptin phase-advances the rat suprachiasmatic circadian clock in vitro. Neurosci Lett. 2003;336(3):139-142.

    Article  CAS  PubMed  Google Scholar 

  • Reick M, Garcia JA, Dudley C, et al. NPAS2: an analog of clock operative in the mammalian forebrain. Science. 2001;293(5529):506-509.

    Article  CAS  PubMed  Google Scholar 

  • Reid KJ, Baron KG, Zee PC. Meal timing influences daily caloric intake in healthy adults. Nutr Res. 2014;34(11):930-935.

    Article  CAS  PubMed  Google Scholar 

  • Rosenfeld P, Van Eekelen JA, Levine S, et al. Ontogeny of the type 2 glucocorticoid receptor in discrete rat brain regions: an immunocytochemical study. Brain Res. 1988;470(1):119-127.

    Article  CAS  PubMed  Google Scholar 

  • Rutter J, Reick M, Wu LC, et al. Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors. Science. 2001;293(5529):510-514.

    Article  CAS  PubMed  Google Scholar 

  • Sack RL, Hughes RJ, Edgar DM, et al. Sleep-promoting effects of melatonin: at what dose, in whom, under what conditions, and by what mechanisms? Sleep. 1997;20(10):908-915.

    CAS  PubMed  Google Scholar 

  • Saderi N, Cazarez-Marquez F, Buijs FN, et al. The NPY intergeniculate leaflet projections to the suprachiasmatic nucleus transmit metabolic conditions. Neuroscience. 2013;246:291-300.

    Article  CAS  PubMed  Google Scholar 

  • Sage D, Ganem J, Guillaumond F, et al. Influence of the corticosterone rhythm on photic entrainment of locomotor activity in rats. J Biol Rhythms. 2004;19(2):144-156.

    Article  CAS  PubMed  Google Scholar 

  • Saini C, Morf J, Stratmann M, et al. Simulated body temperature rhythms reveal the phase-shifting behavior and plasticity of mammalian circadian oscillators. Genes Dev. 2012;26(6):567-580.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Salgado-Delgado R, Angeles-Castellanos M, Buijs MR, et al. Internal desynchronization in a model of night-work by forced activity in rats. Neuroscience. 2008;154(3):922-931.

    Article  CAS  PubMed  Google Scholar 

  • Sans-Fuentes MA, Diez-Noguera A, Cambras T. Light responses of the circadian system in leptin deficient mice. Physiol Behav. 2010;99(4):487-494.

    Article  CAS  PubMed  Google Scholar 

  • Sato M, Murakami M, Node K, et al. The role of the endocrine system in feeding-induced tissue-specific circadian entrainment. Cell Rep. 2014;8(2):393-401.

    Article  CAS  PubMed  Google Scholar 

  • Schmutz I, Ripperger JA, Baeriswyl-Aebischer S, et al. The mammalian clock component PERIOD2 coordinates circadian output by interaction with nuclear receptors. Genes Dev. 2010;24(4):345-357.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sellix MT, Egli M, Poletini MO, et al. Anatomical and functional characterization of clock gene expression in neuroendocrine dopaminergic neurons. Am J Physiol Regul Integr Comp Physiol. 2006;290(5):R1309-R1323.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shibata S, Liou SY, Ueki S, et al. Inhibitory action of insulin on suprachiasmatic nucleus neurons in rat hypothalamic slice preparations. Physiol Behav. 1986;36(1):79-81.

    Article  CAS  PubMed  Google Scholar 

  • Shieh KR, Yang SC, Lu XY, et al. Diurnal rhythmic expression of the rhythm-related genes, rPeriod1, rPeriod2, and rClock, in the rat brain. J Biomed Sci. 2005;12(1):209-217.

    Article  CAS  PubMed  Google Scholar 

  • Silver R, LeSauter J, Tresco PA, et al. A diffusible coupling signal from the transplanted suprachiasmatic nucleus controlling circadian locomotor rhythms. Nature. 1996;382(6594):810-813.

    Article  CAS  PubMed  Google Scholar 

  • Sinha MK, Ohannesian JP, Heiman ML, et al. Nocturnal rise of leptin in lean, obese, and non-insulin-dependent diabetes mellitus subjects. J Clin Invest. 1996;97(5):1344-1347.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Spiegel K, Tasali E, Leproult R, et al. Effects of poor and short sleep on glucose metabolism and obesity risk. Nat Rev Endocrinol. 2009;5(5):253-261.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Steiner RA, Kabigting E, Lent K, et al. Diurnal rhythm in proopiomelanocortin mRNA in the arcuate nucleus of the male rat. J Neuroendocrinol. 1994;6(6):603-608.

    Article  CAS  PubMed  Google Scholar 

  • Stokkan KA, Yamazaki S, Tei H, et al. Entrainment of the circadian clock in the liver by feeding. Science. 2001;291(5503):490-493.

    Article  CAS  PubMed  Google Scholar 

  • Striegel-Moore RH, Rosselli F, Wilson GT, et al. Nocturnal eating: association with binge eating, obesity, and psychological distress. Int J Eat Disord. 2010;43(6):520-526.

    Article  PubMed Central  PubMed  Google Scholar 

  • Surjit M, Ganti KP, Mukherji A, et al. Widespread negative response elements mediate direct repression by agonist-liganded glucocorticoid receptor. Cell. 2011;145(2):224-241.

    Article  CAS  PubMed  Google Scholar 

  • Tahara Y, Otsuka M, Fuse Y, et al. Refeeding after fasting elicits insulin-dependent regulation of Per2 and Rev-erbalpha with shifts in the liver clock. J Biol Rhythms. 2011;26(3):230-240.

    Article  CAS  PubMed  Google Scholar 

  • Tahara Y, Kuroda H, Saito K, et al. In vivo monitoring of peripheral circadian clocks in the mouse. Curr Biol. 2012;22(11):1029-1034.

    Article  CAS  PubMed  Google Scholar 

  • Takeda S, Elefteriou F, Levasseur R, et al. Leptin regulates bone formation via the sympathetic nervous system. Cell. 2002;111(3):305-317.

    Article  CAS  PubMed  Google Scholar 

  • Teboul M, Guillaumond F, Grechez-Cassiau A, et al. The nuclear hormone receptor family round the clock. Mol Endocrinol. 2008;22(12):2573-2582.

    Article  CAS  PubMed  Google Scholar 

  • Tsai LL, Tsai YC, Hwang K, et al. Repeated light – dark shifts speed up body weight gain in male F344 rats. Am J Physiol Endocrinol Metab. 2005;289(2):E212-E217.

    Article  CAS  PubMed  Google Scholar 

  • Turek FW, Joshu C, Kohsaka A, et al. Obesity and metabolic syndrome in circadian Clock mutant mice. Science. 2005;308(5724):1043-1045.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ulrich-Lai YM, Arnhold MM, Engeland WC. Adrenal splanchnic innervation contributes to the diurnal rhythm of plasma corticosterone in rats by modulating adrenal sensitivity to ACTH. Am J Physiol Regul Integr Comp Physiol. 2006;290(4):R1128-R1135.

    Article  CAS  PubMed  Google Scholar 

  • Um JH, Yang S, Yamazaki S, et al. Activation of 5′-AMP-activated kinase with diabetes drug metformin induces casein kinase Iepsilon (CKIepsilon)-dependent degradation of clock protein mPer2. J Biol Chem. 2007;282(29):20794-20798.

    Article  CAS  PubMed  Google Scholar 

  • Unger JW, Livingston JN, Moss AM. Insulin receptors in the central nervous system: localization, signalling mechanisms and functional aspects. Prog Neurobiol. 1991;36(5):343-362.

    Article  CAS  PubMed  Google Scholar 

  • Wakamatsu H, Yoshinobu Y, Aida R, et al. Restricted-feeding-induced anticipatory activity rhythm is associated with a phase-shift of the expression of mPer1 and mPer2 mRNA in the cerebral cortex and hippocampus but not in the suprachiasmatic nucleus of mice. Eur J Neurosci. 2001;13(6):1190-1196.

    Article  CAS  PubMed  Google Scholar 

  • Wang TA, Yu YV, Govindaiah G, et al. Circadian rhythm of redox state regulates excitability in suprachiasmatic nucleus neurons. Science. 2012;337(6096):839-842.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wiater MF, Mukherjee S, Li AJ, et al. Circadian integration of sleep-wake and feeding requires NPY receptor-expressing neurons in the mediobasal hypothalamus. Am J Physiol Regul Integr Comp Physiol. 2011;301(5):R1569-R1583.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Williams KW, Elmquist JK. From neuroanatomy to behavior: central integration of peripheral signals regulating feeding behavior. Nat Neurosci. 2012;15(10):1350-1355.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xu B, Kalra PS, Farmerie WG, et al. Daily changes in hypothalamic gene expression of neuropeptide Y, galanin, proopiomelanocortin, and adipocyte leptin gene expression and secretion: effects of food restriction. Endocrinology. 1999;140(6):2868-2875.

    CAS  PubMed  Google Scholar 

  • Yagita K, Tamanini F, van Der Horst GT, et al. Molecular mechanisms of the biological clock in cultured fibroblasts. Science. 2001;292(5515):278-281.

    Article  CAS  PubMed  Google Scholar 

  • Yanagihara H, Ando H, Hayashi Y, et al. High-fat feeding exerts minimal effects on rhythmic mRNA expression of clock genes in mouse peripheral tissues. Chronobiol Int. 2006;23(5):905-914.

    Article  CAS  PubMed  Google Scholar 

  • Yannielli PC, Molyneux PC, Harrington ME, et al. Ghrelin effects on the circadian system of mice. J Neurosci. 2007;27(11):2890-2895.

    Article  CAS  PubMed  Google Scholar 

  • Yi CX, van der Vliet J, Dai J, et al. Ventromedial arcuate nucleus communicates peripheral metabolic information to the suprachiasmatic nucleus. Endocrinology. 2006;147(1):283-294.

    Article  CAS  PubMed  Google Scholar 

  • Yi CX, Challet E, Pevet P, et al. A circulating ghrelin mimetic attenuates light-induced phase delay of mice and light-induced Fos expression in the suprachiasmatic nucleus of rats. Eur J Neurosci. 2008;27(8):1965-1972.

    Article  PubMed  Google Scholar 

  • Yi CX, Serlie MJ, Ackermans MT, et al. A major role for perifornical orexin neurons in the control of glucose metabolism in rats. Diabetes. 2009;58(9):1998-2005.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yoo SH, Yamazaki S, Lowrey PL, et al. PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc Natl Acad Sci U S A. 2004;101(15):5339-5346.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yoon M. The role of PPARalpha in lipid metabolism and obesity: focusing on the effects of estrogen on PPARalpha actions. Pharmacol Res. 2009;60(3): 151-159.

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Auwerx J. The role of sirtuins in the control of metabolic homeostasis. Ann N Y Acad Sci. 2009;1173(Suppl 1):E10-E19.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zigman JM, Jones JE, Lee CE, et al. Expression of ghrelin receptor mRNA in the rat and the mouse brain. J Comp Neurol. 2006;494(3):528-548.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zvonic S, Ptitsyn AA, Conrad SA, et al. Characterization of peripheral circadian clocks in adipose tissues. Diabetes. 2006;55(4):962-970.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Etienne Challet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Grosbellet, E., Challet, E. (2016). Circadian Rhythms and Metabolism. In: Ahima, R.S. (eds) Metabolic Syndrome. Springer, Cham. https://doi.org/10.1007/978-3-319-11251-0_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11251-0_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11250-3

  • Online ISBN: 978-3-319-11251-0

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics