Skip to main content

Pancreatic Islet Adaptation and Failure in Obesity and Diabetes

  • Reference work entry
  • First Online:
Metabolic Syndrome
  • 3447 Accesses

Abstract

Normally, the insulin secretion is increased in response to insulin resistance in order to maintain glucose homeostasis. Pancreatic islet beta-cells respond to glucose, fatty acids, amino acids, autonomic innervation, incretins, and adipokines. Metabolic syndrome is associated with a failure of pancreatic islets to respond appropriately to nutrient, neuronal, and hormonal signals, resulting in glucose intolerance or type 2 diabetes. Pancreatic islet dysfunction in type 2 diabetes is characterized by increased glucagon secretion; impaired insulin response to secretagogues, e.g., glucose, arginine, and isoproterenol; blunted first-phase insulin secretion; irregular oscillations of plasma insulin levels; and impaired conversion of proinsulin to insulin. In addition, type 2 diabetes may be associated with reduced beta-cell mass, partly mediated by enhanced islet apoptosis due to glucolipotoxicity. Understanding of normal pancreatic islet physiology and molecular pathways linking islet adaptation to diabetes pathophysiology would facilitate the development of novel treatment modalities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ackermann AM, Gannon M. Molecular regulation of pancreatic beta-cell mass development, maintenance, and expansion. J Mol Endocrinol. 2007;38:193-206.

    Article  PubMed  CAS  Google Scholar 

  • Ahren B. Autonomic regulation of islet hormone secretion--implications for health and disease. Diabetologia. 2000;43:393-410.

    Article  PubMed  CAS  Google Scholar 

  • Ahren B. Islet G, protein-coupled receptors as potential targets for treatment of type 2 diabetes. Nat Rev Drug Discov. 2009;8:369-385.

    Article  PubMed  CAS  Google Scholar 

  • Ashcroft FM, Harrison DE, Ashcroft SJ. Glucose induces closure of single potassium channels in isolated rat pancreatic beta-cells. Nature. 1984;312:446-448.

    Article  PubMed  CAS  Google Scholar 

  • Baggio LL, Drucker DJ. Therapeutic approaches to preserve islet mass in type 2 diabetes. Annu Rev Med. 2006;57:265-281.

    Article  PubMed  CAS  Google Scholar 

  • Baggio LL, Drucker DJ. Biology of incretins: GLP-1 and GIP. Gastroenterology. 2007;132:2131-2157.

    Article  PubMed  CAS  Google Scholar 

  • Barlow J, Affourtit C. Novel insights into pancreatic beta-cell glucolipotoxicity from real-time functional analysis of mitochondrial energy metabolism in INS-1E insulinoma cells. Biochem J. 2013;456:417-426.

    Article  PubMed  CAS  Google Scholar 

  • Bernard C, Thibault C, Berthault MF, et al. Pancreatic beta-cell regeneration after 48-h glucose infusion in mildly diabetic rats is not correlated with functional improvement. Diabetes. 1998;47:1058-1065.

    Article  PubMed  CAS  Google Scholar 

  • Bernardi P, Penzo D, Wojtczak L. Mitochondrial energy dissipation by fatty acids. Mechanisms and implications for cell death. Vitam Horm. 2002;65:97-126.

    Article  PubMed  CAS  Google Scholar 

  • Bernard-Kargar C, Ktorza A. Endocrine pancreas plasticity under physiological and pathological conditions. Diabetes. 2001;50(Suppl 1):S30-S35.

    Article  PubMed  CAS  Google Scholar 

  • Biden TJ, Robinson D, Cordery D, et al. Chronic effects of fatty acids on pancreatic beta-cell function: new insights from functional genomics. Diabetes. 2004;53(Suppl 1):S159-S165.

    Article  PubMed  CAS  Google Scholar 

  • Boden G, Chen X. Effects of fatty acids and ketone bodies on basal insulin secretion in type 2 diabetes. Diabetes. 1999;48:577-583.

    Article  PubMed  CAS  Google Scholar 

  • Boden G, Chen X, Rosner J, et al. Effects of a 48-h fat infusion on insulin secretion and glucose utilization. Diabetes. 1995;44:1239-1242.

    Article  PubMed  CAS  Google Scholar 

  • Bonner-Weir S. Islet growth and development in the adult. J Mol Endocrinol. 2000;24:297-302.

    Article  PubMed  CAS  Google Scholar 

  • Boslem E, Meikle PJ, Biden TJ. Roles of ceramide and sphingolipids in pancreatic beta-cell function and dysfunction. Islets. 2012;4:177-187.

    Article  PubMed Central  PubMed  Google Scholar 

  • Branstrom R, Corkey BE, Berggren PO, et al. Evidence for a unique long chain acyl-CoA ester binding site on the ATP-regulated potassium channel in mouse pancreatic beta cells. J Biol Chem. 1997;272:17390-17394.

    Article  PubMed  CAS  Google Scholar 

  • Branstrom R, Leibiger IB, Leibiger B, et al. Long chain coenzyme A esters activate the pore-forming subunit (Kir6. 2) of the ATP-regulated potassium channel. J Biol Chem. 1998;273:31395-31400.

    Article  PubMed  CAS  Google Scholar 

  • Brownlie R, Mayers RM, Pierce JA, et al. The long-chain fatty acid receptor, GPR40, and glucolipotoxicity: investigations using GPR40-knockout mice. Biochem Soc Trans. 2008;36:950-954.

    Article  PubMed  CAS  Google Scholar 

  • Brubaker PL, Drucker DJ. Minireview: glucagon-like peptides regulate cell proliferation and apoptosis in the pancreas, gut, and central nervous system. Endocrinology. 2004;145:2653-2659.

    Article  PubMed  CAS  Google Scholar 

  • Buettner R, Newgard CB, Rhodes CJ, et al. Correction of diet-induced hyperglycemia, hyperinsulinemia, and skeletal muscle insulin resistance by moderate hyperleptinemia. Am J Physiol Endocrinol Metab. 2000;278:E563-E569.

    PubMed  CAS  Google Scholar 

  • Campbell JE, Drucker DJ. Pharmacology, physiology, and mechanisms of incretin hormone action. Cell Metab. 2013;17:819-837.

    Article  PubMed  CAS  Google Scholar 

  • Carpentier A, Mittelman SD, Lamarche B, et al. Acute enhancement of insulin secretion by FFA in humans is lost with prolonged FFA elevation. Am J Physiol. 1999;276:E1055-E1066.

    PubMed  CAS  Google Scholar 

  • Carpentier A, Mittelman SD, Bergman RN, et al. Prolonged elevation of plasma free fatty acids impairs pancreatic beta-cell function in obese nondiabetic humans but not in individuals with type 2 diabetes. Diabetes. 2000;49:399-408.

    Article  PubMed  CAS  Google Scholar 

  • Carpentier A, Giacca A, Lewis GF. Effect of increased plasma non-esterified fatty acids (NEFAs) on arginine-stimulated insulin secretion in obese humans. Diabetologia. 2001;44:1989-1997.

    Article  PubMed  CAS  Google Scholar 

  • Chan CB, Saleh MC, Koshkin V, et al. Uncoupling protein 2 and islet function. Diabetes. 2004;53(Suppl 1):S136-S142.

    Article  PubMed  CAS  Google Scholar 

  • Chen C, Hosokawa H, Bumbalo LM, et al. Regulatory effects of glucose on the catalytic activity and cellular content of glucokinase in the pancreatic beta cell. Study using cultured rat islets. J Clin Invest. 1994;94:1616-1620.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Clark JB, Palmer CJ, Shaw WN. The diabetic Zucker fatty rat. Proc Soc Exp Biol Med Soc Exp Biol Med. 1983;173:68-75.

    Article  CAS  Google Scholar 

  • Cnop M, Welsh N, Jonas JC, et al. Mechanisms of pancreatic beta-cell death in type 1 and type 2 diabetes: many differences, few similarities. Diabetes. 2005;54(Suppl 2):S97-S107.

    Article  PubMed  CAS  Google Scholar 

  • Cnop M, Igoillo-Esteve M, Cunha DA, et al. An update on lipotoxic endoplasmic reticulum stress in pancreatic beta-cells. Biochem Soc Trans. 2008;36:909-915.

    Article  PubMed  CAS  Google Scholar 

  • Cousin SP, Hugl SR, Wrede CE, et al. Free fatty acid-induced inhibition of glucose and insulin-like growth factor I-induced deoxyribonucleic acid synthesis in the pancreatic beta-cell line INS-1. Endocrinology. 2001;142:229-240.

    PubMed  CAS  Google Scholar 

  • Dobbins RL, Chester MW, Daniels MB, et al. Circulating fatty acids are essential for efficient glucose-stimulated insulin secretion after prolonged fasting in humans. Diabetes. 1998;47:1613-1618.

    Article  PubMed  CAS  Google Scholar 

  • Doliba NM, Qin W, Vatamaniuk MZ, et al. Cholinergic regulation of fuel-induced hormone secretion and respiration of SUR1−/− mouse islets. Am J Physiol Endocrinol Metab. 2006;291:E525-E535.

    Article  PubMed  CAS  Google Scholar 

  • Doliba NM, Wehrli SL, Vatamaniuk MZ, et al. Metabolic and ionic coupling factors in amino acid-stimulated insulin release in pancreatic beta-HC9 cells. Am J Physiol Endocrinol Metab. 2007;292:E1507-E1519.

    Article  PubMed  CAS  Google Scholar 

  • Doliba NM, Qin W, Vinogradov SA, et al. Palmitic acid acutely inhibits acetylcholine- but not GLP-1-stimulated insulin secretion in mouse pancreatic islets. Am J Physiol Endocrinol Metab. 2010;299:E475-E485.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Doliba NM, Qin W, Najafi H, et al. Glucokinase activation repairs defective bioenergetics of islets of Langerhans isolated from type 2 diabetics. Am J Physiol Endocrinol Metab. 2012;302:E87-E102.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Doliba NMLC, Chen P, Chen J, et al. Long-Chain Beta-Hydroxylated Fatty Acids as Mediators of Pancreatic Beta-Cell Bioenergetic Failure. Boston, MA: American Diabetes Association; 2015. Diabetes. p. Abstract 2354.

    Google Scholar 

  • Donath MY, Gross DJ, Cerasi E, et al. Hyperglycemia-induced beta-cell apoptosis in pancreatic islets of Psammomys obesus during development of diabetes. Diabetes. 1999;48:738-744.

    Article  PubMed  CAS  Google Scholar 

  • Doyle ME, Egan JM. Mechanisms of action of glucagon-like peptide 1 in the pancreas. Pharmacol Ther. 2007;113:546-593.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Drucker DJ. Incretin action in the pancreas: potential promise, possible perils, and pathological pitfalls. Diabetes. 2013;62:3316-3323.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Drucker DJ. Incretin-based therapies: a clinical need filled by unique metabolic effects. Diabetes Educ. 2006;32(Suppl 2):65S-71S.

    Article  PubMed  Google Scholar 

  • Drucker DJ, Nauck MA. The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet. 2006;368:1696-1705.

    Article  PubMed  CAS  Google Scholar 

  • Ek J, Andersen G, Urhammer SA, et al. Mutation analysis of peroxisome proliferator-activated receptor-gamma coactivator-1 (PGC-1) and relationships of identified amino acid polymorphisms to Type II diabetes mellitus. Diabetologia. 2001;44:2220-2226.

    Article  PubMed  CAS  Google Scholar 

  • El-Assaad W, Buteau J, Peyot ML, et al. Saturated fatty acids synergize with elevated glucose to cause pancreatic beta-cell death. Endocrinology. 2003;144:4154-4163.

    Article  PubMed  CAS  Google Scholar 

  • Fadista J, Vikman P, Laakso EO, et al. Global genomic and transcriptomic analysis of human pancreatic islets reveals novel genes influencing glucose metabolism. Proc Natl Acad Sci U S A. 2014;111:13924-13929.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ferdaoussi M, Bergeron V, Zarrouki B, et al. G protein-coupled receptor (GPR)40-dependent potentiation of insulin secretion in mouse islets is mediated by protein kinase D1. Diabetologia. 2012;55:2682-2692.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Fujiwara K, Maekawa F, Yada T. Oleic acid interacts with GPR40 to induce Ca2+ signaling in rat islet beta-cells: mediation by PLC and L-type Ca2+ channel and link to insulin release. Am J Physiol Endocrinol Metab. 2005;289:E670-E677.

    Article  PubMed  CAS  Google Scholar 

  • Gautam D, Han SJ, Hamdan FF, et al. A critical role for beta cell M3 muscarinic acetylcholine receptors in regulating insulin release and blood glucose homeostasis in vivo. Cell Metab. 2006;3:449-461.

    Article  PubMed  CAS  Google Scholar 

  • Gautam D, Han SJ, Duttaroy A, et al. Role of the M3 muscarinic acetylcholine receptor in beta-cell function and glucose homeostasis. Diabetes Obes Metab. 2007;9(Suppl 2):158-169.

    Article  PubMed  CAS  Google Scholar 

  • Gehrmann W, Elsner M, Lenzen S. Role of metabolically generated reactive oxygen species for lipotoxicity in pancreatic beta-cells. Diabetes Obes Metab. 2010;12(Suppl 2):149-158.

    Article  PubMed  CAS  Google Scholar 

  • Gilon P, Henquin JC. Mechanisms and physiological significance of the cholinergic control of pancreatic beta-cell function. Endocr Rev. 2001;22:565-604.

    PubMed  CAS  Google Scholar 

  • Gremlich S, Bonny C, Waeber G, et al. Fatty acids decrease IDX-1 expression in rat pancreatic islets and reduce GLUT2, glucokinase, insulin, and somatostatin levels. J Biol Chem. 1997;272:30261-30269.

    Article  PubMed  CAS  Google Scholar 

  • Grill V, Bjorklund A. Type 2 diabetes-effect of compensatory oversecretion as a reason for beta-cell collapse. Int J Exp Diabetes Res. 2002;3:153-158.

    Article  PubMed Central  PubMed  Google Scholar 

  • Henquin JC. Regulation of insulin secretion: a matter of phase control and amplitude modulation. Diabetologia. 2009;52:739-751.

    Article  PubMed  CAS  Google Scholar 

  • Henquin JC. Triggering and amplifying pathways of regulation of insulin secretion by glucose. Diabetes. 2000;49:1751-1760.

    Article  PubMed  CAS  Google Scholar 

  • Holz GG, Habener JF. Signal transduction crosstalk in the endocrine system: pancreatic beta-cells and the glucose competence concept. Trends Biochem Sci. 1992;17:388-393.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Houze JB, Zhu L, Sun Y, et al. AMG 837: a potent, orally bioavailable GPR40 agonist. Bioorg Med Chem Lett. 2012;22:1267-1270.

    Article  PubMed  CAS  Google Scholar 

  • Hugl SR, White MF, Rhodes CJ. Insulin-like growth factor I (IGF-I)-stimulated pancreatic beta-cell growth is glucose-dependent. Synergistic activation of insulin receptor substrate-mediated signal transduction pathways by glucose and IGF-I in INS-1 cells. J Biol Chem. 1998;273:17771-17779.

    Article  PubMed  CAS  Google Scholar 

  • Iizuka K, Nakajima H, Namba M, et al. Metabolic consequence of long-term exposure of pancreatic beta cells to free fatty acid with special reference to glucose insensitivity. Biochim Biophys Acta. 2002;1586:23-31.

    Article  PubMed  CAS  Google Scholar 

  • Imai Y, Patel HR, Doliba NM, et al. Analysis of gene expression in pancreatic islets from diet-induced obese mice. Physiol Genomics. 2008;36:43-51.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Inagaki N, Kuromi H, Gonoi T, et al. Expression and role of ionotropic glutamate receptors in pancreatic islet cells. FASEB J. 1995;9:686-691.

    PubMed  CAS  Google Scholar 

  • Itoh Y, Kawamata Y, Harada M, et al. Free fatty acids regulate insulin secretion from pancreatic beta cells through GPR40. Nature. 2003;422:173-176.

    Article  PubMed  CAS  Google Scholar 

  • Jain S, Ruiz de Azua I, Lu H, et al. Chronic activation of a designer G(q)-coupled receptor improves beta cell function. J Clin Invest. 2013;123:1750-1762.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Joseph JW, Koshkin V, Saleh MC, et al. Free fatty acid-induced beta-cell defects are dependent on uncoupling protein 2 expression. J Biol Chem. 2004;279:51049-51056.

    Article  PubMed  CAS  Google Scholar 

  • Karaca M, Magnan C, Kargar C. Functional pancreatic beta-cell mass: involvement in type 2 diabetes and therapeutic intervention. Diabetes Metab. 2009;35:77-84.

    Article  PubMed  CAS  Google Scholar 

  • Karvestedt L, Andersson G, Efendic S, et al. A rapid increase in beta-cell function by multiple insulin injections in type 2 diabetic patients is not further enhanced by prolonging treatment. J Intern Med. 2002;251:307-316.

    Article  PubMed  CAS  Google Scholar 

  • Kashyap S, Belfort R, Gastaldelli A, et al. A sustained increase in plasma free fatty acids impairs insulin secretion in nondiabetic subjects genetically predisposed to develop type 2 diabetes. Diabetes. 2003;52:2461-2474.

    Article  PubMed  CAS  Google Scholar 

  • Kebede M, Alquier T, Latour MG, et al. The fatty acid receptor GPR40 plays a role in insulin secretion in vivo after high-fat feeding. Diabetes. 2008;57:2432-2437.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kelpe CL, Moore PC, Parazzoli SD, et al. Palmitate inhibition of insulin gene expression is mediated at the transcriptional level via ceramide synthesis. J Biol Chem. 2003;278:30015-30021.

    Article  PubMed  CAS  Google Scholar 

  • Kharroubi I, Ladriere L, Cardozo AK, et al. Free fatty acids and cytokines induce pancreatic beta-cell apoptosis by different mechanisms: role of nuclear factor-kappaB and endoplasmic reticulum stress. Endocrinology. 2004;145:5087-5096.

    Article  PubMed  CAS  Google Scholar 

  • Kimple ME, Neuman JC, Linnemann AK, et al. Inhibitory G proteins and their receptors: emerging therapeutic targets for obesity and diabetes. Exp Mol Med. 2014;46, e102.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Klingenberg M. The ADP, and ATP transport in mitochondria and its carrier. Biochim Biophys Acta. 1778;2008:1978-2021.

    Article  PubMed  CAS  Google Scholar 

  • Klingenberg M, Huang SG. Structure and function of the uncoupling protein from brown adipose tissue. Biochim Biophys Acta. 1999;1415:271-296.

    Article  PubMed  CAS  Google Scholar 

  • Kloppel G, Lohr M, Habich K, et al. Islet pathology and the pathogenesis of type 1 and type 2 diabetes mellitus revisited. Surv Synth Pathol Res. 1985;4:110-125.

    PubMed  CAS  Google Scholar 

  • Koshkin V, Wang X, Scherer PE, et al. Mitochondrial functional state in clonal pancreatic beta-cells exposed to free fatty acids. J Biol Chem. 2003;278:19709-19715.

    Article  PubMed  CAS  Google Scholar 

  • Kristinsson H, Smith DM, Bergsten P, et al. FFAR1 is involved in both the acute and chronic effects of palmitate on insulin secretion. Endocrinology. 2013;154:4078-4088.

    Article  PubMed  CAS  Google Scholar 

  • Lagerstrom MC, Schioth HB. Structural diversity of G protein-coupled receptors and significance for drug discovery. Nat Rev Drug Discov. 2008;7:339-357.

    Article  PubMed  CAS  Google Scholar 

  • Lan H, Hoos LM, Liu L, et al. Lack of FFAR1/GPR40 does not protect mice from high-fat diet-induced metabolic disease. Diabetes. 2008;57:2999-3006.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Latour MG, Alquier T, Oseid E, et al. GPR40 is necessary but not sufficient for fatty acid stimulation of insulin secretion in vivo. Diabetes. 2007;56:1087-1094.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lee J, Cummings BP, Martin E, et al. Glucose sensing by gut endocrine cells and activation of the vagal afferent pathway is impaired in a rodent model of type 2 diabetes mellitus. Am J Physiol Regul Integr Comp Physiol. 2012;302:R657-R666.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Li C, Najafi H, Daikhin Y, et al. Regulation of leucine-stimulated insulin secretion and glutamine metabolism in isolated rat islets. J Biol Chem. 2003;278:2853-2858.

    Article  PubMed  CAS  Google Scholar 

  • Liang Y, Matschinsky FM. Content of CoA-esters in perifused rat islets stimulated by glucose and other fuels. Diabetes. 1991;40:327-333.

    Article  PubMed  CAS  Google Scholar 

  • Lin DC, Zhang J, Zhuang R, et al. AMG 837: a novel GPR40/FFA1 agonist that enhances insulin secretion and lowers glucose levels in rodents. PLoS One. 2011;6, e27270.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lingohr MK, Buettner R, Rhodes CJ. Pancreatic beta-cell growth and survival--a role in obesity-linked type 2 diabetes? Trends Mol Med. 2002;8:375-384.

    Article  PubMed  CAS  Google Scholar 

  • Loskovich MV, Grivennikova VG, Cecchini G, et al. Inhibitory effect of palmitate on the mitochondrial NADH:ubiquinone oxidoreductase (complex I) as related to the active-de-active enzyme transition. Biochem J. 2005;387:677-683.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Luo J, Swaminath G, Brown SP, et al. A potent class of GPR40 full agonists engages the enteroinsular axis to promote glucose control in rodents. PLoS One. 2012;7, e46300.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lupi R, Dotta F, Marselli L, et al. Prolonged exposure to free fatty acids has cytostatic and pro-apoptotic effects on human pancreatic islets: evidence that beta-cell death is caspase mediated, partially dependent on ceramide pathway, and Bcl-2 regulated. Diabetes. 2002;51:1437-1442.

    Article  PubMed  CAS  Google Scholar 

  • Matschinsky FM. Banting Lecture 1995. A lesson in metabolic regulation inspired by the glucokinase glucose sensor paradigm. Diabetes. 1996;45:223-241.

    Article  PubMed  CAS  Google Scholar 

  • Matschinsky FM, Ellerman JE, Landgraf, Krzanowski J, et al. Quantitative histochemistry of glucose metabolism in the islets of Langerhans. Curr Prob Clin Biochem. 1971;3:143-182.

    CAS  Google Scholar 

  • McGarry JD. Banting lecture 2001: dysregulation of fatty acid metabolism in the etiology of type 2 diabetes. Diabetes. 2002;51:7-18.

    Article  PubMed  CAS  Google Scholar 

  • McGarry JD, Dobbins RL. Fatty acids, lipotoxicity and insulin secretion. Diabetologia. 1999;42:128-138.

    Article  PubMed  CAS  Google Scholar 

  • Milburn JL Jr, Hirose H, Lee YH, et al. Pancreatic beta-cells in obesity. Evidence for induction of functional, morphologic, and metabolic abnormalities by increased long chain fatty acids. J Biol Chem. 1995;270:1295-1299.

    Article  PubMed  CAS  Google Scholar 

  • Mokdad AH, Bowman BA, Ford ES, et al. The continuing epidemics of obesity and diabetes in the United States. JAMA. 2001;286:1195-1200.

    Article  PubMed  CAS  Google Scholar 

  • Morgan D, Oliveira-Emilio HR, Keane D, et al. Glucose, palmitate and pro-inflammatory cytokines modulate production and activity of a phagocyte-like NADPH oxidase in rat pancreatic islets and a clonal beta cell line. Diabetologia. 2007;50:359-369.

    Article  PubMed  CAS  Google Scholar 

  • Nagasumi K, Esaki R, Iwachidow K, et al. Overexpression of GPR40 in pancreatic beta-cells augments glucose-stimulated insulin secretion and improves glucose tolerance in normal and diabetic mice. Diabetes. 2009;58:1067-1076.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Nakajima K, Jain S, Ruiz de Azua I, et al. Minireview: novel aspects of M3 muscarinic receptor signaling in pancreatic beta-cells. Mol Endocrinol. 2013;27:1208-1216.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Newgard CB, Matschinsky F. Substrate control of insulin release. In: L J, eds. Handbook of Physiology. Oxford, CA: Oxford University Press; 2001.

    Google Scholar 

  • Newsholme P, Bender K, Kiely A, et al. Amino acid metabolism, insulin secretion and diabetes. Biochem Soc Trans. 2007a;35:1180-1186.

    Article  PubMed  CAS  Google Scholar 

  • Newsholme P, Keane D, Welters HJ, et al. Life and death decisions of the pancreatic beta-cell: the role of fatty acids. Clin Sci. 2007b;112:27-42.

    Article  PubMed  CAS  Google Scholar 

  • Newsholme P, Cruzat V, Arfuso F, et al. Nutrient regulation of insulin secretion and action. J Endocrinol. 2014;221:R105-R120.

    Article  PubMed  CAS  Google Scholar 

  • Nolan CJ, Prentki M. The islet beta-cell: fuel responsive and vulnerable. Trends Endocrinol Metab. 2008;19:285-291.

    Article  PubMed  CAS  Google Scholar 

  • Nolan CJ, Madiraju MS, Delghingaro-Augusto V, et al. Fatty acid signaling in the beta-cell and insulin secretion. Diabetes. 2006;55(Suppl 2):S16-S23.

    Article  PubMed  CAS  Google Scholar 

  • Oberkofler H, Linnemayr V, Weitgasser R, et al. Complex haplotypes of the PGC-1alpha gene are associated with carbohydrate metabolism and type 2 diabetes. Diabetes. 2004;53:1385-1393.

    Article  PubMed  CAS  Google Scholar 

  • Oberkofler H, Klein K, Felder TK, et al. Role of peroxisome proliferator-activated receptor-gamma coactivator-1alpha in the transcriptional regulation of the human uncoupling protein 2 gene in INS-1E cells. Endocrinology. 2006;147:966-976.

    Article  PubMed  CAS  Google Scholar 

  • Oberkofler H, Hafner M, Felder T, et al. Transcriptional co-activator peroxisome proliferator-activated receptor (PPAR)gamma co-activator-1beta is involved in the regulation of glucose-stimulated insulin secretion in INS-1E cells. J Mol Med (Berl). 2009;87:299-306.

    Article  CAS  Google Scholar 

  • Olofsson CS, Collins S, Bengtsson M, et al. Long-term exposure to glucose and lipids inhibits glucose-induced insulin secretion downstream of granule fusion with plasma membrane. Diabetes. 2007;56:1888-1897.

    Article  PubMed  CAS  Google Scholar 

  • Paolisso G, Tagliamonte MR, Rizzo MR, et al. Lowering fatty acids potentiates acute insulin response in first degree relatives of people with type II diabetes. Diabetologia. 1998;41:1127-1132.

    Article  PubMed  CAS  Google Scholar 

  • Parnaud G, Bosco D, Berney T, et al. Proliferation of sorted human and rat beta cells. Diabetologia. 2008;51:91-100.

    Article  PubMed  CAS  Google Scholar 

  • Parsons JA, Brelje TC, Sorenson RL. Adaptation of islets of Langerhans to pregnancy: increased islet cell proliferation and insulin secretion correlates with the onset of placental lactogen secretion. Endocrinology. 1992;130:1459-1466.

    PubMed  CAS  Google Scholar 

  • Penzo D, Tagliapietra C, Colonna R, et al. Effects of fatty acids on mitochondria: implications for cell death. Biochim Biophys Acta. 2002;1555:160-165.

    Article  PubMed  CAS  Google Scholar 

  • Penzo D, Petronilli V, Angelin A, et al. Arachidonic acid released by phospholipase A(2) activation triggers Ca(2+)-dependent apoptosis through the mitochondrial pathway. J Biol Chem. 2004;279:25219-25225.

    Article  PubMed  CAS  Google Scholar 

  • Peyot ML, Pepin E, Lamontagne J, et al. Beta-cell failure in diet-induced obese mice stratified according to body weight gain: secretory dysfunction and altered islet lipid metabolism without steatosis or reduced beta-cell mass. Diabetes. 2010;59:2178-2187.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Pick A, Clark J, Kubstrup C, et al. Role of apoptosis in failure of beta-cell mass compensation for insulin resistance and beta-cell defects in the male Zucker diabetic fatty rat. Diabetes. 1998;47:358-364.

    Article  PubMed  CAS  Google Scholar 

  • Poitout V, Robertson RP. Glucolipotoxicity: fuel excess and beta-cell dysfunction. Endocr Rev. 2008;29:351-366.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Poitout V, Robertson RP. Minireview: secondary beta-cell failure in type 2 diabetes-a convergence of glucotoxicity and lipotoxicity. Endocrinology. 2002;143:339-342.

    PubMed  CAS  Google Scholar 

  • Poitout V, Amyot J, Semache M, et al. Glucolipotoxicity of the pancreatic beta cell. Biochim Biophys Acta. 1801;2010:289-298.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Prentki M, Madiraju SR. Glycerolipid metabolism and signaling in health and disease. Endocr Rev. 2008;29:647-676.

    Article  PubMed  CAS  Google Scholar 

  • Prentki M, Madiraju SR. Glycerolipid/free fatty acid cycle and islet beta-cell function in health, obesity and diabetes. Mol Cell Endocrinol. 2012;353:88-100.

    Article  PubMed  CAS  Google Scholar 

  • Prentki M, Vischer S, Glennon MC, et al. Malonyl-CoA and long chain acyl-CoA esters as metabolic coupling factors in nutrient-induced insulin secretion. J Biol Chem. 1992;267:5802-5810.

    PubMed  CAS  Google Scholar 

  • Prentki M, Joly E, El-Assaad W, et al. Malonyl-CoA signaling, lipid partitioning, and glucolipotoxicity: role in beta-cell adaptation and failure in the etiology of diabetes. Diabetes. 2002;51(Suppl 3):S405-S413.

    Article  PubMed  CAS  Google Scholar 

  • Prentki M, Matschinsky FM, Madiraju SR. Metabolic signaling in fuel-induced insulin secretion. Cell Metab. 2013;18:162-185.

    Article  PubMed  CAS  Google Scholar 

  • Puigserver P, Wu Z, Park CW, et al. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell. 1998;92:829-839.

    Article  PubMed  CAS  Google Scholar 

  • Rajan S, Dickson LM, Mathew E, et al. Chronic hyperglycemia downregulates GLP-1 receptor signaling in pancreatic beta-cells via protein kinase A. Mol Metab. 2015;4:265-276.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Rankin MM, Kushner JA. Adaptive beta-cell proliferation is severely restricted with advanced age. Diabetes. 2009;58:1365-1372.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Reaven GM. Banting Lecture 1988. Role of insulin resistance in human disease. 1988. Nutrition. 1997;13:65; discussion 4, 6.

    Google Scholar 

  • Reaven GM. Pathophysiology of insulin resistance in human disease. Physiol Rev. 1995;75:473-486.

    PubMed  CAS  Google Scholar 

  • Regard JB, Kataoka H, Cano DA, et al. Probing cell type-specific functions of Gi in vivo identifies GPCR regulators of insulin secretion. J Clin Invest. 2007;117:4034-4043.

    PubMed Central  PubMed  CAS  Google Scholar 

  • Reimann F, Huopio H, Dabrowski M, et al. Characterisation of new KATP-channel mutations associated with congenital hyperinsulinism in the Finnish population. Diabetologia. 2003;46:241-249.

    Article  PubMed  CAS  Google Scholar 

  • Rhodes CJ. Type 2 diabetes-a matter of beta-cell life and death? Science. 2005;307:380-384.

    Article  PubMed  CAS  Google Scholar 

  • Roat R, Rao V, Doliba NM, et al. Alterations of pancreatic islet structure, metabolism and gene expression in diet-induced obese C57BL/6 J mice. PLoS One. 2014;9, e86815.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Rocca AS, Brubaker PL. Role of the vagus nerve in mediating proximal nutrient-induced glucagon-like peptide-1 secretion. Endocrinology. 1999;140:1687-1694.

    PubMed  CAS  Google Scholar 

  • Rorsman P, Braun M. Regulation of insulin secretion in human pancreatic islets. Annu Rev Physiol. 2013;75:155-179.

    Article  PubMed  CAS  Google Scholar 

  • Rosengren AH, Braun M, Mahdi T, et al. Reduced insulin exocytosis in human pancreatic beta-cells with gene variants linked to type 2 diabetes. Diabetes. 2012;61:1726-1733.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sako Y, Grill VE. A 48-hour lipid infusion in the rat time-dependently inhibits glucose-induced insulin secretion and B cell oxidation through a process likely coupled to fatty acid oxidation. Endocrinology. 1990;127:1580-1589.

    Article  PubMed  CAS  Google Scholar 

  • Schonfeld P, Reiser G. Rotenone-like action of the branched-chain phytanic acid induces oxidative stress in mitochondria. J Biol Chem. 2006;281:7136-7142.

    Article  PubMed  CAS  Google Scholar 

  • Schonfeld P, Wojtczak L. Fatty acids as modulators of the cellular production of reactive oxygen species. Free Radic Biol Med. 2008;45:231-241.

    Article  PubMed  CAS  Google Scholar 

  • Schonfeld P, Wojtczak L. Fatty acids decrease mitochondrial generation of reactive oxygen species at the reverse electron transport but increase it at the forward transport. Biochim Biophys Acta. 1767;2007:1032-1040.

    Article  PubMed  CAS  Google Scholar 

  • Schuit FC, In’t Veld PA, Pipeleers DG. Glucose stimulates proinsulin biosynthesis by a dose-dependent recruitment of pancreatic beta cells. Proc Natl Acad Sci U S A. 1988;85:3865-3869.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Scorrano L, Penzo D, Petronilli V, et al. Arachidonic acid causes cell death through the mitochondrial permeability transition. Implications for tumor necrosis factor-alpha aopototic signaling. J Biol Chem. 2001;276:12035-12040.

    Article  PubMed  CAS  Google Scholar 

  • Shimabukuro M, Zhou YT, Levi M, et al. Fatty acid-induced beta cell apoptosis: a link between obesity and diabetes. Proc Natl Acad Sci U S A. 1998;95:2498-2502.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Soga T, Ohishi T, Matsui T, et al. Lysophosphatidylcholine enhances glucose-dependent insulin secretion via an orphan G-protein-coupled receptor. Biochem Biophys Res Commun. 2005;326:744-751.

    Article  PubMed  CAS  Google Scholar 

  • Somesh BP, Verma MK, Sadasivuni MK, et al. Chronic glucolipotoxic conditions in pancreatic islets impair insulin secretion due to dysregulated calcium dynamics, glucose responsiveness and mitochondrial activity. BMC Cell Biol. 2013;14:31.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sorenson RL, Brelje TC, Hegre OD, et al. Prolactin (in vitro) decreases the glucose stimulation threshold, enhances insulin secretion, and increases dye coupling among islet B cells. Endocrinology. 1987;121:1447-1453.

    Article  PubMed  CAS  Google Scholar 

  • Sorenson RL, Brelje TC. Adaptation of islets of Langerhans to pregnancy: beta-cell growth, enhanced insulin secretion and the role of lactogenic hormones. Horm Metab Res. 1997;29:301-307.

    Article  PubMed  CAS  Google Scholar 

  • Steiner DJ, Kim A, Miller K, et al. Pancreatic islet plasticity: interspecies comparison of islet architecture and composition. Islets. 2010;2:135-145.

    Article  PubMed Central  PubMed  Google Scholar 

  • Steneberg P, Rubins N, Bartoov-Shifman R, et al. The FFA receptor GPR40 links hyperinsulinemia, hepatic steatosis, and impaired glucose homeostasis in mouse. Cell Metab. 2005;1:245-258.

    Article  PubMed  CAS  Google Scholar 

  • Surwit RS, Kuhn CM, Cochrane C, et al. Diet-induced type II diabetes in C57BL/6 J mice. Diabetes. 1988;37:1163-1167.

    Article  PubMed  CAS  Google Scholar 

  • Teff KL, Townsend RR. Early phase insulin infusion and muscarinic blockade in obese and lean subjects. Am J Physiol. 1999;277:R198-R208.

    PubMed  CAS  Google Scholar 

  • Thorens B. Neural regulation of pancreatic islet cell mass and function. Diabetes Obes Metab. 2014;16(Suppl 1):87-95.

    Article  PubMed  CAS  Google Scholar 

  • Tonin AM, Ferreira GC, Grings M, et al. Disturbance of mitochondrial energy homeostasis caused by the metabolites accumulating in LCHAD and MTP deficiencies in rat brain. Life Sci. 2010;86:825-831.

    Article  PubMed  CAS  Google Scholar 

  • Tonin AM, Amaral AU, Busanello EN, et al. Long-chain 3-hydroxy fatty acids accumulating in long-chain 3-hydroxyacyl-CoA dehydrogenase and mitochondrial trifunctional protein deficiencies uncouple oxidative phosphorylation in heart mitochondria. J Bioenerg Biomembr. 2013;45:47-57.

    Article  PubMed  CAS  Google Scholar 

  • Tsujihata Y, Ito R, Suzuki M, et al. TAK-875, an orally available G protein-coupled receptor 40/free fatty acid receptor 1 agonist, enhances glucose-dependent insulin secretion and improves both postprandial and fasting hyperglycemia in type 2 diabetic rats. J Pharmacol Exp Ther. 2011;339:228-237.

    Article  PubMed  CAS  Google Scholar 

  • Unger RH, Orci L. Diseases of liporegulation: new perspective on obesity and related disorders. FASEB J. 2001;15:312-321.

    Article  PubMed  CAS  Google Scholar 

  • Vilsboll T, Krarup T, Deacon CF, et al. Reduced postprandial concentrations of intact biologically active glucagon-like peptide 1 in type 2 diabetic patients. Diabetes. 2001;50:609-613.

    Article  PubMed  CAS  Google Scholar 

  • West GM, Willard FS, Sloop KW, et al. Glucagon-like peptide-1 receptor ligand interactions: structural cross talk between ligands and the extracellular domain. PLoS One. 2014;9, e105683.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wierup N, Sundler F, Heller RS. The islet ghrelin cell. J Mol Endocrinol. 2014;52:R35-R49.

    Article  PubMed  CAS  Google Scholar 

  • Wojtczak L, Schonfeld P. Effect of fatty acids on energy coupling processes in mitochondria. Biochim Biophys Acta. 1993;1183:41-57.

    Article  PubMed  CAS  Google Scholar 

  • Wollheim CB, Maechler P. Beta cell glutamate receptor antagonists: novel oral antidiabetic drugs? Nat Med. 2015;21:310-311.

    Article  PubMed  CAS  Google Scholar 

  • Wollheim CB, Pralong WF. Cytoplasmic calcium ions and other signalling events in insulin secretion. Biochem Soc Trans. 1990;18:111-114.

    Article  PubMed  CAS  Google Scholar 

  • Yashiro H, Tsujihata Y, Takeuchi K, et al. The effects of TAK-875, a selective G protein-coupled receptor 40/free fatty acid 1 agonist, on insulin and glucagon secretion in isolated rat and human islets. J Pharmacol Exp Ther. 2012;340:483-489.

    Article  PubMed  CAS  Google Scholar 

  • Yoon JC, Xu G, Deeney JT, et al. Suppression of beta cell energy metabolism and insulin release by PGC-1alpha. Dev Cell. 2003;5:73-83.

    Article  PubMed  CAS  Google Scholar 

  • Zawalich WS, Zawalich KC, Tesz GJ, et al. Effects of muscarinic receptor type 3 knockout on mouse islet secretory responses. Biochem Biophys Res Commun. 2004;315:872-876.

    Article  PubMed  CAS  Google Scholar 

  • Zhang CY, Baffy G, Perret P, et al. Uncoupling protein-2 negatively regulates insulin secretion and is a major link between obesity, beta cell dysfunction, and type 2 diabetes. Cell. 2001;105:745-755.

    Article  PubMed  CAS  Google Scholar 

  • Zhou YP, Grill V. Long term exposure to fatty acids and ketones inhibits B-cell functions in human pancreatic islets of Langerhans. J Clin Endocrinol Metab. 1995;80:1584-1590.

    PubMed  CAS  Google Scholar 

  • Zhou YP, Cockburn BN, Pugh W, et al. Basal insulin hypersecretion in insulin-resistant Zucker diabetic and Zucker fatty rats: role of enhanced fuel metabolism. Metab Clin Exp. 1999;48:857-864.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolai M. Doliba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Doliba, N.M. (2016). Pancreatic Islet Adaptation and Failure in Obesity and Diabetes. In: Ahima, R.S. (eds) Metabolic Syndrome. Springer, Cham. https://doi.org/10.1007/978-3-319-11251-0_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11251-0_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11250-3

  • Online ISBN: 978-3-319-11251-0

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics