Skip to main content

Genetics of Type 2 Diabetes

  • Reference work entry
  • First Online:
Metabolic Syndrome
  • 3500 Accesses

Abstract

The promise of high-throughput genomics has started to deliver novel insights in the genetic etiology of type 2 diabetes and its related traits. In particular, genome-wide association studies have revealed new biological underpinnings to metabolic traits, with particular focus being on the strongest loci TCF7L2 and FTO. However, many challenges still lie ahead as much of the “missing heritability” of such traits remains to be elucidated, with only a minority of the genetic component to type 2 diabetes being characterized to date. Undeterred, investigators are aiming to use what has been found to already attempt risk prediction models, while lab-based researchers are trying to elucidate functional mechanism. However, the latter has a number of challenges as these well-established signals still require full characterization of the causal tissue, the causal variant, and often the actual causal gene. However, once advances are made of these fronts, the future looks bright with respect to the development of novel therapeutics and diagnostics for type 2 diabetes and its related traits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Altshuler D, Hirschhorn JN, Klannemark M, et al. The common PPARgamma Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes. Nat Genet. 2000;26(1):76-80.

    Google Scholar 

  • Amundadottir LT, Sulem P, Gudmundsson J, et al. A common variant associated with prostate cancer in European and African populations. Nat Genet. 2006;38(6):652-658. PubMed PMID: 16682969.

    Google Scholar 

  • Andersen MK, Sterner M, Forsen T, et al. Type 2 diabetes susceptibility gene variants predispose to adult-onset autoimmune diabetes. Diabetologia. 2014. doi:10.1007/s00125-014-3287-8. Epub 2014/06/08. PubMed PMID: 24906951.

    Google Scholar 

  • Andersson EA, Pilgaard K, Pisinger C, et al. Do gene variants influencing adult adiposity affect birth weight? A population-based study of 24 loci in 4,744 Danish individuals. PLoS One. 2010;5(12):e14190. doi:10.1371/journal.pone.0014190. Epub 2010/12/15. PubMed PMID: 21152014; PubMed Central PMCID: PMC2995733.

    Google Scholar 

  • Andersson EA, Allin KH, Sandholt CH, et al. Genetic risk score of 46 type 2 diabetes risk variants with changes in plasma glucose and estimates of pancreatic b-cell function over 5 years of follow-up. Diabetes. 2013;62(10):3610-3617.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Baker N, Morin PJ, Clevers H. The Ying-Yang of TCF/beta-catenin signaling. Adv Cancer Res. 2000;77:1-24.

    Article  Google Scholar 

  • Barker N, Huls G, Korinek V, et al. Restricted high level expression of Tcf-4 protein in intestinal and mammary gland epithelium. Am J Pathol. 1999;154(1):29-35. doi:10.1016/S0002-9440(10)65247-9. PubMed PMID: 9916915; PubMed Central PMCID: PMC1853446.

    Google Scholar 

  • Basile KJ, Guy VC, Schwartz S, et al. Overlap of genetic susceptibility to type 1 diabetes, type 2 diabetes, and latent autoimmune diabetes in adults. Curr Diab Rep. 2014;14(11):550. doi:10.1007/s11892-014-0550-9. PubMed PMID: 25189437.

    Google Scholar 

  • Bass AJ, Lawrence MS, Brace LE, et al. Genomic sequencing of colorectal adenocarcinomas identifies a recurrent VTI1A-TCF7L2 fusion. Nat Genet. 2011;43(10):964-968. doi:10.1038/ng.936. PubMed

    Google Scholar 

  • Boj SF, van Es JH, Huch M, et al. Diabetes risk gene and Wnt effector Tcf7l2/TCF4 controls hepatic response to perinatal and adult metabolic demand. Cell. 2012;151(7):1595-1607. Epub 2012/12/25. doi: S0092-8674(12)01429-8 [pii] 10.1016/j.cell.2012.10.053. PubMed PMID: 23260145.

    Google Scholar 

  • Bouatia-Naji N, Bonnefond A, Cavalcanti-Proenca C, et al. A variant near MTNR1B is associated with increased fasting plasma glucose levels and type 2 diabetes risk. Nat Genet. 2009;41(1):89-94. PubMed PMID: 19060909.

    Google Scholar 

  • Bradfield JP, Taal HR, Timpson NJ, et al. A genome-wide association meta-analysis identifies new childhood obesity loci. Nat Genet. 2012;44:526-531. PubMed PMID: 22484627.

    Google Scholar 

  • Cauchi S, Froguel P. TCF7L2 genetic defect and type 2 diabetes. Curr Diab Rep. 2008;8(2):149-155.

    Article  CAS  PubMed  Google Scholar 

  • Cauchi S, Meyre D, Dina C, et al. Transcription factor TCF7L2 genetic study in the French population: expression in human beta-cells and adipose tissue and strong association with type 2 diabetes. Diabetes. 2006;55(10):2903-2908.

    Article  CAS  PubMed  Google Scholar 

  • Cauchi S, El Achhab Y, Choquet H, et al. TCF7L2 is reproducibly associated with type 2 diabetes in various ethnic groups: a global meta-analysis. J Mol Med. 2007;85(7):777-782. PubMed PMID: 17476472.

    Google Scholar 

  • Cecil JE, Tavendale R, Watt P, et al. An obesity-associated FTO gene variant and increased energy intake in children. N Engl J Med. 2008;359(24):2558-2566. doi:10.1056/NEJMoa0803839. Epub 2008/12/17. PubMed PMID: 19073975.

    Google Scholar 

  • Chang YC, Chang TJ, Jiang YD, et al. Association study of the genetic polymorphisms of the transcription factor 7-like 2 (TCF7L2) gene and type 2 diabetes in the Chinese population. Diabetes. 2007;56(10):2631-2637.

    Article  CAS  PubMed  Google Scholar 

  • Cho YS, Chen CH, Hu C, et al. Meta-analysis of genome-wide association studies identifies eight new loci for type 2 diabetes in east Asians. Nat Genet. 2011;44(1):67-72. Epub 2011/12/14. doi: ng.1019 [pii] 10.1038/ng.1019. PubMed PMID: 22158537.

    Google Scholar 

  • Church C, Lee S, Bagg EA, et al. A mouse model for the metabolic effects of the human fat mass and obesity associated FTO gene. PLoS Genet. 2009;5(8). e1000599.

    Google Scholar 

  • Church C, Moir L, McMurray F, et al. Overexpression of Fto leads to increased food intake and results in obesity. Nat Genet. 2010;42(12):1086-1092.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • da Silva Xavier G, Mondragon A, Sun G, et al. Abnormal glucose tolerance and insulin secretion in pancreas-specific Tcf7l2-null mice. Diabetologia. 2012;55(10):2667-2676.

    Article  Google Scholar 

  • de Miguel-Yanes JM, Shrader P, Pencina MJ, et al. Genetic risk reclassification for type 2 diabetes by age below or above 50 years using 40 type 2 diabetes risk single nucleotide polymorphisms. Diabetes Care. 2011;34(1):121-125.

    Article  PubMed Central  PubMed  Google Scholar 

  • DIAbetes Genetics Replication and Meta-analysis (DIAGRAM) Consortium. Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility. Nat Genet. 2014;46(3):234-244. Epub 2014/02/11. doi: ng.2897 [pii] 10.1038/ng.2897. PubMed PMID: 24509480.

    Google Scholar 

  • Dina C, Meyre D, Samson C, et al. Comment on “A common genetic variant is associated with adult and childhood obesity”. Science. 2007a;315(5809):187; author reply PubMed PMID: 17218509.

    Google Scholar 

  • Dina C, Meyre D, Gallina S, et al. Variation in FTO contributes to childhood obesity and severe adult obesity. Nat Genet. 2007b;39(6):724-726.

    Article  CAS  PubMed  Google Scholar 

  • Dupuis J, Langenberg C, Prokopenko I, et al. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat Genet. 2010;42(2):105-116. PubMed PMID: 20081858.

    Google Scholar 

  • Duval A, Gayet J, Zhou XP, et al. Frequent frameshift mutations of the TCF-4 gene in colorectal cancers with microsatellite instability. Cancer Res. 1999;59(17):4213–4215. PubMed

    Google Scholar 

  • Duval A, Rolland S, Tubacher E, et al. The human T-cell transcription factor-4 gene: structure, extensive characterization of alternative splicings, and mutational analysis in colorectal cancer cell lines. Cancer Res. 2000;60(14):3872-3879. PubMed PMID: 10919662.

    Google Scholar 

  • Elbein SC, Chu WS, Das SK, et al. Transcription factor 7-like 2 polymorphisms and type 2 diabetes, glucose homeostasis traits and gene expression in US partici-pants of European and African descent. Diabetologia. 2007;50(8):1621-1630.

    Article  CAS  PubMed  Google Scholar 

  • Estrada K, Aukrust I, Bjorkhaug L, et al. Association of a low-frequency variant in HNF1A with type 2 diabetes in a Latino population. JAMA. 2014;311(22):2305-2314. Epub 2014/06/11. doi: 1878720 [pii] 10.1001/jama.2014.6511. PubMed PMID: 24915262.

    Google Scholar 

  • Fischer J, Koch L, Emmerling C, et al. Inactivation of the Fto gene protects from obesity. Nature. 2009;458(7240):894-898.

    Article  CAS  PubMed  Google Scholar 

  • Flannick J, Thorleifsson G, Beer NL, et al. Loss-of-function mutations in SLC30A8 protect against type 2 diabetes. Nat Genet. 2014;46(4):357-363. Epub 2014/03/04. doi: ng.2915 [pii] 10.1038/ng.2915. PubMed PMID: 24584071.

    Google Scholar 

  • Florez JC, Jablonski KA, Bayley N, et al. TCF7L2 polymorphisms and progression to diabetes in the Diabetes Prevention Program. N Engl J Med. 2006;355(3):241-250. Epub 2006/07/21. doi: 10.1056/NEJMoa062418. PubMed PMID: 16855264; PubMed Central PMCID: PMC1762036.

    Google Scholar 

  • Frayling TM, Timpson NJ, Weedon MN, et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science. 2007;316(5826):889-894.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Frayling TM, Colhoun H, Florez JC. A genetic link between type 2 diabetes and prostate cancer. Diabetologia. 2008;51(10):1757-1760. PubMed PMID: 18696045.

    Google Scholar 

  • Freathy RM, Weedon MN, Bennett A, et al. Type 2 diabetes TCF7L2 risk genotypes alter birth weight: a study of 24,053 individuals. Am J Hum Genet. 2007;80(6):1150-1161. PubMed PMID: 17503332.

    Google Scholar 

  • Freathy RM, Bennett AJ, Ring SM, et al. Type 2 diabetes risk alleles are associated with reduced size at birth. Diabetes. 2009;58(6):1428-1433. PubMed PMID: 19228808.

    Google Scholar 

  • Freathy RM, Mook-Kanamori DO, Sovio U, et al. Variants in ADCY5 and near CCNL1 are associated with fetal growth and birth weight. Nat Genet. 2010;42(5):430-435. PubMed PMID: 20372150.

    Google Scholar 

  • Gaulton KJ, Nammo T, Pasquali L, et al. A map of open chromatin in human pancreatic islets. Nat Genet. 2010;42(3):255-259.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gerken T, Girard CA, Tung YC, et al. The obesity-associated FTO gene encodes a 2-oxoglutarate-dependent nucleic acid demethylase. Science. 2007;318(5855):1469-1472. PubMed PMID: 17991826.

    Google Scholar 

  • Gloyn AL, Weedon MN, Owen KR, et al. Large-scale association studies of variants in genes encoding the pancreatic beta-cell KATP channel subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) confirm that the KCNJ11 E23K variant is associated with type 2 diabetes. Diabetes. 2003;52(2):568-572.

    Article  CAS  PubMed  Google Scholar 

  • Grant SF, Thorleifsson G, Reynisdottir I, et al. Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat Genet. 2006;38(3):320-323. PubMed PMID: 16415884.

    Google Scholar 

  • Grant SF, Hakonarson H, Schwartz S. Can the genetics of type 1 and type 2 diabetes shed light on the genetics of latent autoimmune diabetes in adults? Endocr Rev. 2010;31(2):183-193. PubMed PMID: 20007922.

    Google Scholar 

  • Gudmundsson J, Sulem P, Steinthorsdottir V, et al. Two variants on chromosome 17 confer prostate cancer risk, and the one in TCF2 protects against type 2 diabetes. Nat Genet. 2007;39(8):977-983. PubMed PMID: 17603485.

    Google Scholar 

  • Haiman CA, Patterson N, Freedman ML, et al. Multiple regions within 8q24 independently affect risk for prostate cancer. Nat Genet. 2007a;39(5):638-644. PubMed PMID: 17401364.

    Google Scholar 

  • Haiman CA, Le Marchand L, Yamamato J, et al. A common genetic risk factor for colorectal and prostate cancer. Nat Genet. 2007b;39(8):954-956. PubMed PMID: 17618282.

    Google Scholar 

  • Hansson O, Zhou Y, Renström E, et al. Molecular function of TCF7L2: consequences of TCF7L2 splicing for molecular function and risk for type 2 diabetes. Curr Diab Rep. 2010;10(6):444-451.

    Google Scholar 

  • Hardy R, Wills AK, Wong A, et al. Life course variations in the associations between FTO and MC4R gene variants and body size. Hum Mol Genet. 2010;19(3):545-552. Epub 2009/11/03. doi: 10.1093/hmg/ddp504. PubMed PMID: 19880856; PubMed Central PMCID: PMC2798720.

    Google Scholar 

  • Hattersley AT, Tooke JE. The fetal insulin hypothesis: an alternative explanation of the association of low birthweight with diabetes and vascular disease. Lancet. 1999;353(9166):1789-1792. Epub 1999/05/29. doi: 10.1016/S0140-6736(98)07546-1. PubMed PMID: 10348008.

    Google Scholar 

  • Hattersley AT, Beards F, Ballantyne E, et al. Mutations in the glucokinase gene of the fetus result in reduced birth weight. Nat Genet. 1998;19(3):268-270. Epub 1998/07/14. doi: 10.1038/953. PubMed

    Google Scholar 

  • He X. A Wnt-Wnt situation. Dev Cell. 2003;4(6):791-797. PubMed PMID: 12791265.

    Google Scholar 

  • He TC, Sparks AB, Rago C, et al. Identification of c-MYC as a target of the APC pathway. Science. 1998;281(5382):1509-1512. PubMed PMID: 9727977.

    Google Scholar 

  • Helgason A, Palsson S, Thorleifsson G, et al. Refining the impact of TCF7L2 gene variants on type 2 diabetes and adaptive evolution. Nat Genet. 2007;39(2):218-225. PubMed PMID: 17206141.

    Google Scholar 

  • Hivert MF, Jablonski KA, Perreault L, et al. Updated genetic score based on 34 confirmed type 2 diabetes Loci is associated with diabetes incidence and regression to normoglycemia in the diabetes prevention program. Diabetes. 2011;60(4):1340-1348.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Horikawa Y, Oda N, Cox NJ, et al. Genetic variation in the gene encoding calpain-10 is associated with type 2 diabetes mellitus. Nat Genet. 2000;26(2):163-175.

    Article  CAS  PubMed  Google Scholar 

  • Horikoshi M, Yaghootkar H, Mook-Kanamori DO, et al. New loci associated with birth weight identify genetic links between intrauterine growth and adult height and metabolism. Nat Genet. 2013;45(1):76-82. Epub 2012/12/04. doi: ng.2477 [pii] 10.1038/ng.2477. PubMed PMID: 23202124.

    Google Scholar 

  • Hotta K, Nakamura M, Nakata Y, et al. INSIG2 gene rs7566605 polymorphism is associated with severe obesity in Japanese. J Hum Genet. 2008;53(9):857-862. PubMed PMID: 18615239.

    Google Scholar 

  • Johnson ME, Zhao J, Schug J, et al. Two novel type 2 diabetes loci revealed through integration of TCF7L2 DNA occupancy and SNP association data. BMJ Open Diabetes Res Care. 2014;2(1):e000052. Epub 2014/12/04. doi: 10.1136/bmjdrc-2014-000052 bmjdrc-2014-000052 [pii]. PubMed PMID: 25469308.

    Google Scholar 

  • Kaminska D, Kuulasmaa T, Venesmaa S, et al. Adipose tissue TCF7L2 splicing is regulated by weight loss and associates with glucose and fatty acid metabolism. Diabetes. 2012;61(11):2807-2813. Epub 2012/10/23. doi: db12-0239 [pii] 10.2337/db12-0239. PubMed PMID: 23086040.

    Google Scholar 

  • Kinzler KW, Vogelstein B. Lessons from hereditary colorectal cancer. Cell. 1996;87(2):159-170. PubMed PMID: 8861899.

    Google Scholar 

  • Kooner JS, Saleheen D, Sim X, et al. Genome-wide association study in individuals of South Asian ancestry identifies six new type 2 diabetes susceptibility loci. Nat Genet. 2011;43(10):984-989. Epub 2011/08/30. doi: ng.921 [pii] 10.1038/ng.921. PubMed PMID: 21874001.

    Google Scholar 

  • Korinek V, Barker N, Moerer P, et al. Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4. Nat Genet. 1998;19(4):379-383. doi:10.1038/1270. PubMed PMID: 9697701.

    Google Scholar 

  • Le Bacquer O, Kerr-Conte J, Gargani S, et al. TCF7L2 rs7903146 impairs islet function and morphology in non-diabetic individuals. Diabetologia. 2012;55(10):2677-2681.

    Article  CAS  PubMed  Google Scholar 

  • Lein ES, Hawrylycz MJ, Ao N, et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature. 2007;445(7124):168-176. Epub 2006/12/08. doi: 10.1038/nature05453. PubMed PMID: 17151600.

    Google Scholar 

  • Liu Z, Habener JF. Glucagon-like peptide-1 activation of TCF7L2-dependent Wnt signaling enhances pancreatic beta cell proliferation. J Biol Chem. 2008;283(13):8723-8735.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Locke AE, Kahali B, Berndt SI, et al. Genetic studies of body mass index yield new insights for obesity biology. Nature. 2015;518(7538):197-206. doi:10.1038/nature14177. PubMed PMID: 25673413; PubMed Central PMCID: PMC4382211.

    Google Scholar 

  • Lohmueller KE, Pearce CL, Pike M, et al. Meta-analysis of genetic association studies supports a contribution of common variants to susceptibility to common disease. Nat Genet. 2003;33(2):177-182. PubMed PMID: 12524541.

    Google Scholar 

  • Loos RJ, Barroso I, O’Rahilly S, et al. Comment on “A common genetic variant is associated with adult and childhood obesity”. Science. 2007;315(5809):187; author reply PubMed

    Google Scholar 

  • Loos RJ, Lindgren CM, Li S, et al. Common variants near MC4R are associated with fat mass, weight and risk of obesity. Nat Genet. 2008;40(6):768-775. PubMed PMID: 18454148.

    Google Scholar 

  • Lyon HN, Emilsson V, Hinney A, et al. The association of a SNP upstream of INSIG2 with body mass index is reproduced in several but not all cohorts. PLoS Genet. 2007;3(4):e61. PubMed PMID: 17465681.

    Google Scholar 

  • Lyssenko V, Lupi R, Marchetti P, et al. Mechanisms by which common variants in the TCF7L2 gene increase risk of type 2 diabetes. J Clin Invest. 2007;117(8):2155-2163. PubMed PMID: 17671651.

    Google Scholar 

  • Lyssenko V, Jonsson A, Almgren P, et al. Clinical risk factors, DNA variants, and the development of type 2 diabetes. N Engl J Med. 2008;359(21). Epub 2008/11/21. doi: 359/21/2220 [pii] 10.1056/NEJMoa0801869. PubMed PMID: 19020324.

    Google Scholar 

  • Lyssenko V, Nagorny CL, Erdos MR, et al. Common variant in MTNR1B associated with increased risk of type 2 diabetes and impaired early insulin secretion. Nat Genet. 2009;41(1):82-88. PubMed PMID: 19060908.

    Google Scholar 

  • Maller JB, McVean G, Byrnes J, et al. Bayesian refinement of association signals for 14 loci in 3 common diseases. Nat Genet. 2012. Epub 2012/10/30. doi: ng.2435 [pii] 10.1038/ng.2435. PubMed PMID: 23104008.

    Google Scholar 

  • Manco M, Dallapiccola B. Genetics of pediatric obesity. Pediatrics. 2012;130(1):123-133. Epub 2012/06/06. doi:10.1542/peds.2011-2717. PubMed PMID: 22665408.

    Google Scholar 

  • Manolio TA, Collins FS, Cox NJ, et al. Finding the missing heritability of complex diseases. Nature. 2009;461(7265):747-753. PubMed PMID: 19812666.

    Google Scholar 

  • Meigs JB, Shrader P, Sullivan LM, et al. Genotype score in addition to common risk factors for prediction of type 2 diabetes. N Engl J Med. 2008;359(21):2208-2219.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Monda KL, Chen GK, Taylor KC, et al. A meta-analysis identifies new loci associated with body mass index in individuals of African ancestry. Nat Genet. 2013. Epub 2013/04/16. doi: ng.2608 [pii] 10.1038/ng.2608. PubMed PMID: 23583978.

    Google Scholar 

  • Mook-Kanamori DO, de Kort SW, van Duijn CM, et al. Type 2 diabetes gene TCF7L2 polymorphism is not associated with fetal and postnatal growth in two birth cohort studies. BMC Med Genet. 2009;10:67. Epub 2009/07/21. doi: 10.1186/1471-2350-10-67. PubMed PMID: 19615048; PubMed Central PMCID: PMC2722586.

    Google Scholar 

  • Morgan AR, Thompson JM, Murphy R, et al. Obesity and diabetes genes are associated with being born small for gestational age: results from the Auckland Birthweight Collaborative study. BMC Med Genet. 2010;11:125. Epub 2010/08/18. doi: 10.1186/1471-2350-11-125. PubMed PMID: 20712903; PubMed Central PMCID: PMC2928774.

    Google Scholar 

  • Morris AP, Voight BF, Teslovich TM, et al. Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat Genet. 2012;44(9):981-990. Epub 2012/08/14. doi: ng.2383 [pii] 10.1038/ng.2383. PubMed PMID: 22885922.

    Google Scholar 

  • International HapMap Consortium. The International HapMap project. Nature. 2003;426(6968):789-796. PubMed PMID: 14685227.

    Google Scholar 

  • International HapMap Consortium. A haplotype map of the human genome. Nature. 2005;437(7063):1299-1320. PubMed PMID: 16255080.

    Google Scholar 

  • Ng MC, Tam CH, Lam VK, et al. Replication and identification of novel variants at TCF7L2 associated with type 2 diabetes in Hong Kong Chinese. J Clin Endocrinol Metab. 2007;92(9):3733-3737.

    Google Scholar 

  • Ng MC, Park KS, Oh B, et al. Implication of genetic variants near TCF7L2, SLC30A8, HHEX, CDKAL1, CDKN2A/B, IGF2BP2, and FTO in type 2 diabetes and obesity in 6,719 Asians. Diabetes. 2008;57(8):2226-2233.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ng MC, Shriner D, Chen BH, et al. Meta-analysis of genome-wide association studies in African Americans provides insights into the genetic architecture of type 2 diabetes. PLoS Genet. 2014;10(8), e1004517. doi:10.1371/journal.pgen.1004517. PubMed PMID: 25102180; PubMed Central PMCID: PMC4125087.

    Google Scholar 

  • Nicklas TA, Baranowski T, Cullen KW, et al. Eating patterns, dietary quality and obesity. J Am Coll Nutr. 2001;20(6):599-608. PubMed PMID: 11771675.

    Google Scholar 

  • Norton L, Fourcaudot M, Abdul-Ghani MA, et al. Chromatin occupancy of transcription factor 7-like 2 (TCF7L2) and its role in hepatic glucose metabolism. Diabetologia. 2011;54(12):3132-3142. PubMed PMID: 21901280.

    Google Scholar 

  • Okada Y, Kubo M, Ohmiya H, et al. Common variants at CDKAL1 and KLF9 are associated with body mass index in east Asian populations. Nat Genet. 2012;44(3):302-306. Epub 2012/02/22. doi: ng.1086 [pii] 10.1038/ng.1086. PubMed PMID: 22344221.

    Google Scholar 

  • Palmer ND, Hester JM, An SS, et al. Resequencing and analysis of variation in the TCF7L2 gene in African Americans suggests that SNP rs7903146 is the causal diabetes susceptibility variant. Diabetes. 2011;60(2):662-668. Epub 2010/10/29. doi: db10-0134 [pii] 10.2337/db10-0134. PubMed PMID: 20980453; PubMed Central PMCID: PMC3028368.

    Google Scholar 

  • Parsons TJ, Power C, Logan S, et al. Childhood predictors of adult obesity: a systematic review. Int J Obes Relat Metab Disord. 1999;23(Suppl 8):S1-S107. PubMed PMID: 10641588.

    Google Scholar 

  • Pomerantz MM, Ahmadiyeh N, Jia L, et al. The 8q24 cancer risk variant rs6983267 shows long-range interaction with MYC in colorectal cancer. Nat Genet. 2009;41(8):882-884. PubMed PMID: 19561607.

    Google Scholar 

  • Prokunina-Olsson L, Kaplan LM, Schadt EE, et al. Alternative splicing of TCF7L2 gene in omental and subcutaneous adipose tissue and risk of type 2 diabetes. PLoS One. 2009a;4(9):e7231.

    Google Scholar 

  • Prokunina-Olsson L, Welch C, Hansson O, et al. Tissue-specific alternative splicing of TCF7L2. Hum Mol Genet. 2009b;18(20):3795-3804.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pulizzi N, Lyssenko V, Jonsson A, et al. Interaction between prenatal growth and high-risk genotypes in the development of type 2 diabetes. Diabetologia. 2009;52(5):825-829. PubMed PMID: 19225753.

    Google Scholar 

  • Ren Q, Han XY, Wang F, et al. Exon sequencing and association analysis of polymorphisms in TCF7L2 with type 2 diabetes in a Chinese population. Diabetologia. 2008;51(7):1146-1152.

    Article  CAS  PubMed  Google Scholar 

  • Reynisdottir I, Thorleifsson G, Benediktsson R, et al. Localization of a susceptibility gene for type 2 diabetes to chromosome 5q34-q35.2. Am J Hum Genet. 2003;73(2):323-335. PubMed PMID: 12851856.

    Google Scholar 

  • Rich SS. Mapping genes in diabetes. Genetic epidemiological perspective. Diabetes. 1990;39(11):1315-1319. PubMed PMID: 2227105.

    Google Scholar 

  • Rosskopf D, Bornhorst A, Rimmbach C, et al. Comment on “A common genetic variant is associated with adult and childhood obesity”. Science. 2007;315(5809):187; author reply PubMed PMID: 17218510.

    Google Scholar 

  • Rung J, Cauchi S, Albrechtsen A, et al. Genetic variant near IRS1 is associated with type 2 diabetes, insulin resistance and hyperinsulinemia. Nat Genet. 2009;41(10):1110-1115. PubMed PMID: 19734900.

    Google Scholar 

  • Savic D, Ye H, Aneas I, et al. Alterations in TCF7L2 expression define its role as a key regulator of glucose metabolism. Genome Res. 2011;21(9):1417-1425.

    Google Scholar 

  • Saxena R, Voight BF, Lyssenko V, et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science. 2007;316(5829):1331-1336. PubMed PMID: 17463246.

    Google Scholar 

  • Scott LJ, Mohlke KL, Bonnycastle LL, et al. A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science. 2007;316(5829):1341-1345. PubMed PMID: 17463248.

    Google Scholar 

  • Shu L, Sauter NS, Schulthess FT, et al. Transcription factor 7-like 2 regulates beta-cell survival and function in human pancreatic islets. Diabetes. 2008;57(3):645-653.

    Google Scholar 

  • Sladek R, Rocheleau G, Rung J, et al. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature. 2007;445(7130):881-885. PubMed PMID: 17293876.

    Google Scholar 

  • Smemo S, Tena JJ, Kim KH, et al. Obesity-associated variants within FTO form long-range functional connections with IRX3. Nature. 2014;507(7492):371-375. Epub 2014/03/22. doi: nature13138 [pii] 10.1038/nature13138. PubMed PMID: 24646999.

    Google Scholar 

  • Speliotes EK, Willer CJ, Berndt SI, et al. Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nat Genet. 2010;42(11):937-948. PubMed PMID: 20935630.

    Google Scholar 

  • Steinthorsdottir V, Thorleifsson G, Reynisdottir I, et al. A variant in CDKAL1 influences insulin response and risk of type 2 diabetes. Nat Genet. 2007;39(6):770-775. PubMed PMID: 17460697.

    Google Scholar 

  • Steinthorsdottir V, Thorleifsson G, Sulem P, et al. Identification of low-frequency and rare sequence variants associated with elevated or reduced risk of type 2 diabetes. Nat Genet. 2014;46(3):294-298. Epub 2014/01/28. doi: ng.2882 [pii] 10.1038/ng.2882. PubMed PMID: 24464100.

    Google Scholar 

  • Stephens M, Smith NJ, Donnelly P. A new statistical method for haplotype reconstruction from population data. Am J Hum Genet. 2001;68(4):978-989. PubMed PMID: 11254454.

    Google Scholar 

  • Sur IK, Hallikas O, Vähärautio A, et al. Mice lacking a Myc enhancer that includes human SNP rs6983267 are resistant to intestinal tumors. Science. 2012;338(6112):1360-1363. doi:10.1126/science.1228606. PubMed

    Google Scholar 

  • Talmud PJ, Cooper JA, Morris RW, et al. Sixty-five common genetic variants and prediction of type 2 diabetes. Diabetes. 2015;64(5):1830-1840. doi:10.2337/db14-1504. PubMed PMID: 25475436; PubMed Central PMCID: PMC4407866.

    Google Scholar 

  • Tetsu O, McCormick F. Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature. 1999;389(6726):422-426.

    Google Scholar 

  • Thorleifsson G, Walters GB, Gudbjartsson DF, et al. Genome-wide association yields new sequence variants at seven loci that associate with measures of obesity. Nat Genet. 2009;41(1):18-24. PubMed PMID: 19079260.

    Google Scholar 

  • Tomlinson I, Webb E, Carvajal-Carmona L, et al. A genome-wide association scan of tag SNPs identifies a susceptibility variant for colorectal cancer at 8q24.21. Nat Genet. 2007;39(8):984-988. PubMed PMID: 17618284.

    Google Scholar 

  • Tuupanen S, Turunen M, Lehtonen R, et al. The common colorectal cancer predisposition SNP rs6983267 at chromosome 8q24 confers potential to enhanced Wnt signaling. Nat Genet. 2009;41(8):885-890. PubMed PMID: 19561604.

    Google Scholar 

  • Unoki H, Takahashi A, Kawaguchi T, et al. SNPs in KCNQ1 are associated with susceptibility to type 2 diabetes in East Asian and European populations. Nat Genet. 2008;40(9):1098-1102. PubMed PMID: 18711366.

    Google Scholar 

  • van Es JH, Barker N, Clevers H. You Wnt some, you lose some: oncogenes in the Wnt signaling pathway. Curr Opin Genet Dev. 2003;13(1):28-33. PubMed PMID: 12573432.

    Google Scholar 

  • van Hoek M, Langendonk JG, de Rooij SR, et al. Genetic variant in the IGF2BP2 gene may interact with fetal malnutrition to affect glucose metabolism. Diabetes. 2009;58(6):1440-1444. doi:10.2337/db08-1173. Epub 2009/03/05. PubMed PMID: 19258437; PubMed Central PMCID: PMC2682678.

    Google Scholar 

  • Voight BF, Scott LJ, Steinthorsdottir V, et al. Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nat Genet. 2010;42(7):579-589. PubMed PMID: 20581827.

    Google Scholar 

  • Wardle J, Carnell S, Haworth CM, et al. Obesity associated genetic variation in FTO is associated with diminished satiety. J Clin Endocrinol Metab. 2008;93(9):3640-3643.

    Google Scholar 

  • Weedon MN. The importance of TCF7L2. Diabet Med. 2007;24(10):1062-1066. PubMed PMID: 17888129.

    Google Scholar 

  • Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature. 2007;447(7145):661-678. PubMed PMID: 17554300.

    Google Scholar 

  • Wen W, Cho YS, Zheng W, et al. Meta-analysis identifies common variants associated with body mass index in east Asians. Nat Genet. 2012;44(3):307-311. Epub 2012/02/22. doi: ng.1087 [pii] 10.1038/ng.1087. PubMed PMID: 24464100.

    Google Scholar 

  • Whincup PH, Kaye SJ, Owen CG, et al. Birth weight and risk of type 2 diabetes: a systematic review. JAMA. 2008;300(24):2886-2897. PubMed PMID: 19109117.

    Google Scholar 

  • Whitaker RC, Wright JA, Pepe MS, et al. Predicting obesity in young adulthood from childhood and parental obesity. N Engl J Med. 1997;337(13):869-873. PubMed PMID: 9302300.

    Google Scholar 

  • Willer CJ, Speliotes EK, Loos RJ, et al. Six new loci associated with body mass index highlight a neuronal influence on body weight regulation. Nat Genet. 2009;41(1):25-34. PubMed PMID: 19079261.

    Google Scholar 

  • Williams AL, Jacobs SB, Moreno-Macias H, et al. Sequence variants in SLC16A11 are a common risk factor for type 2 diabetes in Mexico. Nature. 2014;506(7486):97-101. Epub 2014/01/07. doi: nature12828 [pii] 10.1038/nature12828. PubMed PMID: 24390345

    Google Scholar 

  • Witte JS. Multiple prostate cancer risk variants on 8q24. Nat Genet. 2007;39(5):579-580. PubMed PMID: 17460686.

    Google Scholar 

  • Yasuda K, Miyake K, Horikawa Y, et al. Variants in KCNQ1 are associated with susceptibility to type 2 diabetes mellitus. Nat Genet. 2008;40(9):1092-1097. PubMed PMID: 18711367.

    Google Scholar 

  • Yeager M, Orr N, Hayes RB, et al. Genome-wide association study of prostate cancer identifies a second risk locus at 8q24. Nat Genet. 2007;39(5):645-649. PubMed PMID: 17401363.

    Google Scholar 

  • Yi F, Brubaker PL, Jin T. TCF-4 mediates cell type-specific regulation of proglucagon gene expression by beta-catenin and glycogen synthase kinase-3beta. J Biol Chem. 2005;280(2):1457-1464. doi:10.1074/jbc.M411487200. PubMed PMID: 15525634.

    Google Scholar 

  • Yu M, Xu XJ, Yin JY, et al. KCNJ11 Lys23Glu and TCF7L2 rs290487(C/T) polymorphisms affect therapeutic efficacy of repaglinide in Chinese patients with type 2 diabetes. Clin Pharmacol Ther. 2010;87(3):330-335.

    Article  CAS  PubMed  Google Scholar 

  • Zanke BW, Greenwood CM, Rangrej J, et al. Genome-wide association scan identifies a colorectal cancer susceptibility locus on chromosome 8q24. Nat Genet. 2007;39(8):989-994. PubMed PMID: 17618283.

    Google Scholar 

  • Zeggini E, McCarthy MI. TCF7L2: the biggest story in diabetes genetics since HLA? Diabetologia. 2007;50(1):1-4. PubMed PMID: 17096114.

    Google Scholar 

  • Zeggini E, Weedon MN, Lindgren CM, et al. Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science. 2007;316(5829):1336-1341. PubMed PMID: 17463249.

    Google Scholar 

  • Zeggini E, Scott LJ, Saxena R, et al. Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat Genet. 2008;40(5):638-645. PubMed PMID: 18372903.

    Google Scholar 

  • Zhao J, Li M, Bradfield JP, et al. Examination of type 2 diabetes loci implicates CDKAL1 as a birth weight gene. Diabetes. 2009;58(10):2414-2418. PubMed PMID: 19592620.

    Google Scholar 

  • Zhao J, Schug J, Li M, Kaestner KH, et al. Disease-associated loci are significantly over-represented among genes bound by transcription factor 7-like 2 (TCF7L2) in vivo. Diabetologia. 2010;53(11):2340-2346. PubMed PMID: 20640398.

    Google Scholar 

  • Zheng X, Ren W, Zhang S, et al. Association of type 2 diabetes susceptibility genes (TCF7L2, SLC30A8, PCSK1 and PCSK2) and proinsulin conversion in a Chinese population. Mol Biol Rep. 2012;39(1):17-23.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Struan F. A. Grant .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Grant, S.F.A. (2016). Genetics of Type 2 Diabetes. In: Ahima, R.S. (eds) Metabolic Syndrome. Springer, Cham. https://doi.org/10.1007/978-3-319-11251-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11251-0_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11250-3

  • Online ISBN: 978-3-319-11251-0

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics