Skip to main content

Low Mach Number Limits and Acoustic Waves

  • Living reference work entry
  • First Online:
  • 214 Accesses

Abstract

This review is devoted to the low Mach number limits of the Navier-Stokes equations for the compressible fluids in the context of weak solutions. Acoustic waves play a crucial role in these limits. However, in the torus, whole space, and bounded domain cases, the behaviors of acoustic waves are significantly different.

This is a preview of subscription content, log in via an institution.

References

  1. T. Alazard, Incompressible limit of the nonisentropic Euler equations with the solid wall boundary conditions. Adv. Difference Equ. 10(1), 19–44 (2005)

    MathSciNet  MATH  Google Scholar 

  2. T. Alazard, Low Mach number limit of the full Navier-Stokes equations. Arch. Ration. Mech. Anal. 180(1), 1–73 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. T. Alazard, A minicourse on the Low Mach number limit. Discret. Contin. Dyn. Syst. Ser. S 1(3), 365–404 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. H. Beirão da Veiga, On the singular limit for slightly compressible fluids. Calc. Var. Partial Differ. Equ. 2(2), 205–218 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  5. H. Beirão da Veiga, Singular limits in compressible fluid dynamics. Arch. Ration. Mech. Anal. 128(4), 313–327 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  6. D. Bresch, G. Métivier, Anelastic limits for Euler-type systems. Appl. Math. Res. eXpress AMRX 2010(2), 119–141 (2010)

    MathSciNet  MATH  Google Scholar 

  7. D. Bresch, B. Desjardins, E. Grenier, C.K. Lin, Low Mach number limit of viscous polytropic flows: formal asymptotics in the periodic case. Stud. Appl. Math. 109(2), 125–149 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. R. Danchin, Global existence in critical spaces for compressible Navier-Stokes equations. Invent. Math. 141(3), 579–614 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. R. Danchin, Zero Mach number limit for compressible flows with periodic boundary conditions. Am. J. Math. 124(6), 1153–1219 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. R. Danchin, Zero Mach number limit in critical spaces for compressible Navier-Stokes equations. Annales Scientifiques de l’École Normale Supérieure Quatrième Série 35(1), 27–75 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. R. Danchin, Low Mach number limit for viscous compressible flows. ESAIM: Mathematical Modelling and Numerical Analysis-Modélisation Mathématique et Analyse Numérique 39(3), 459–475 (2005)

    Article  MathSciNet  Google Scholar 

  12. B. Desjardins, E. Grenier, Low Mach number limit of viscous compressible flows in the whole space. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 455(1986), 2271–2279 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. B. Desjardins, E. Grenier, P.L. Lions, N. Masmoudi, Incompressible limit for solutions of the isentropic Navier-Stokes equations with Dirichlet boundary conditions. Journal de Mathématiques Pures et Appliquées 78(5), 461–471 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. D.R. Durran, Numerical Methods for Wave Equations in Geophysical Fluid Dynamics, vol. 32 (Springer Science & Business Media, New York, 1999)

    MATH  Google Scholar 

  15. D.G. Ebin, The motion of slightly compressible fluids viewed as a motion with strong constraining force. Ann. Math. Second Ser. 105(1), 141–200 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  16. E. Feireisl, On compactness of solutions to the compressible isentropic Navier-Stokes equations when the density is not square integrable. Comment. Math. Univ. Carol. 42(1), 83–98 (2001)

    MathSciNet  MATH  Google Scholar 

  17. E. Feireisl, Viscous and/or heat conducting compressible fluids, in Handbook of Mathematical Fluid Dynamics, ed. by S. Friedlander, D. Serre, vol. 1 (North-Holland, Amsterdam, 2002), pp. 307–371

    Google Scholar 

  18. E. Feireisl, Dynamics of Viscous Compressible Fluids. Oxford Lecture Series in Mathematics and Its Applications, vol. 26 (Oxford University Press, Oxford, 2004)

    Google Scholar 

  19. E. Feireisl, Low Mach number limits of compressible rotating fluids. J. Math. Fluid Mech. 14(1), 61–78 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. E. Feireisl, J. Málek, A. Novotný, I. Straškraba, Anelastic approximation as a singular limit of the compressible Navier-Stokes system. Commun. Partial Differ. Equ. 33(1), 157–176 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. E. Feireisl, A. Novotný, H. Petzeltová, Low Mach number limit for the Navier-Stokes system on unbounded domains under strong stratification. Commun. Partial Differ. Equ. 35(1), 68–88 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. E. Feireisl, O. Kreml, Š. Nečasová, J. Neustupa, J. Stebel, Incompressible limits of fluids excited by moving boundaries. SIAM J. Math. Anal. 46(2), 1456–1471 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. I. Gallagher, Applications of Schochet’s methods to parabolic equations. Journal de Mathématiques Pures et Appliquées 77(10), 989–1054 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  24. I. Gallagher, A remark on smooth solutions of the weakly compressible periodic Navier-Stokes equations. J. Math. Kyoto Univ. 40(3), 525–540 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. I. Gallagher, Résultats récents sur la limite incompressible. Astérisque (299):Exp. No. 926, vii, 29–57, séminaire Bourbaki. Vol.2003/2004 (2005)

    Google Scholar 

  26. N. Garofalo, F. Segàla, Another step toward the solution of the Pompeiu problem in the plane. Commun. Partial Differ. Equ. 18(3-4), 491–503 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  27. P. Gérard, Microlocal defect measures. Commun. Partial Differ. Equ. 16(11), 1761–1794 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  28. E. Grenier, Oscillatory perturbations of the Navier-Stokes equations. Journal de Mathématiques Pures et Appliquées 76(6), 477–498 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  29. T. Hagstrom, J. Lorenz, All-time existence of classical solutions for slightly compressible flows. SIAM J. Math. Anal. 29(3), 652–672 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  30. A. Harten, P.D. Lax, C.D. Levermore, W.J. Morokoff, Convex entropies and hyperbolicity for general Euler equations. SIAM J. Numer. Anal. 35(6), 2117–2127 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  31. D. Hoff, The Zero-Mach limit of compressible flows. Commun. Math. Phys. 192(3), 543–554 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  32. H. Isozaki, Singular limits for the compressible Euler equation in an exterior domain. Journal für die Reine und Angewandte Mathematik 381, 1–36 (1987)

    MathSciNet  MATH  Google Scholar 

  33. H. Isozaki, Wave operators and the incompressible limit of the compressible Euler equation. Commun. Math. Phys. 110(3), 519–524 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  34. N. Jiang, C.D. Levermore, Weakly nonlinear-dissipative approximations of hyperbolic–parabolic systems with entropy. Arch. Ration. Mech. Anal. 201(2), 377–412 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. N. Jiang, C.D. Levermore, Global existence and regularity of the weakly compressible Navier-Stokes system. Asymptot. Anal. 76(2), 61–86 (2012)

    MathSciNet  MATH  Google Scholar 

  36. N. Jiang, N. Masmoudi, On the construction of boundary layers in the incompressible limit with boundary. Journal de Mathématiques Pures et Appliquées 103(1), 269–290 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  37. N. Jiang, N. Masmoudi, Boundary layers and incompressible Navier-Stokes-Fourier limit of the Boltzmann equation in bounded domain I. Commun. Pure Appl. Math. 70(1), 90–171 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  38. N. Jiang, L.J. Xiong, T.F. Zhang, Incompressible limit of isentropic Navier-Stokes equations with Navier-slip boundary (2016, preprint)

    Google Scholar 

  39. J.L. Joly, G. Métivier, J. Rauch, Coherent and focusing multidimensional nonlinear geometric optics. Annales Scientifiques de l’École Normale Supérieure Quatrième Série 28(1), 51–113 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  40. S. Klainerman, A. Majda, Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids. Commun. Pure Appl. Math. 34(4), 481–524 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  41. S. Klainerman, A. Majda, Compressible and incompressible fluids. Commun. Pure Appl. Math. 35(5), 629–651 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  42. H.O. Kreiss, Problems with different time scales for partial differential equations. Commun. Pure Appl. Math. 33(3), 399–439 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  43. J. Leray, Essai sur les mouvements plans d’un fluide visqueux que limitent des parois. Journal de Mathématiques pures et appliquées 12, 331–418 (1934)

    MATH  Google Scholar 

  44. J. Leray, Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63(1), 193–248 (1934)

    Article  MathSciNet  MATH  Google Scholar 

  45. P.L. Lions, Mathematical Topics in Fluid Mechanics. Vol. 1 Incompressible Models. Oxford Lecture Series in Mathematics and Its Applications, Oxford Science Publications, vol. 3 (The Clarendon Press/Oxford University Press, New York, 1996)

    Google Scholar 

  46. P.L. Lions, Mathematical Topics in Fluid Mechanics. Vol. 2 Compressible Models. Oxford Lecture Series in Mathematics and Its Applications, Oxford Science Publications, vol. 10 (The Clarendon Press/Oxford University Press, New York, 1998)

    Google Scholar 

  47. P.L. Lions, Bornes sur la densité pour les équations de Navier-Stokes compressibles isentropiques avec conditions aux limites de Dirichlet. Comptes Rendus de l’Académie des Sciences-Series I-Mathematics 328(8), 659–662 (1999)

    Article  MATH  Google Scholar 

  48. P.L. Lions, N. Masmoudi, Incompressible limit for a viscous compressible fluid. Journal de Mathématiques Pures et Appliquées 77(6), 585–627 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  49. P.L. Lions, N. Masmoudi, Une approche locale de la limite incompressible. Comptes Rendus de l’Académie des Sciences-Series I-Mathematics 329(5), 387–392 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  50. F.B. Lipps, R.S. Hemler, A scale analysis of deep moist convection and some related numerical calculations. J. Atmos. Sci. 39(10), 2192–2210 (1982)

    Article  Google Scholar 

  51. N. Masmoudi, Asymptotic problems and compressible-incompressible limit, in Advances in Mathematical Fluid Mechanics, Paseky, 1999 (Springer, Berlin, 2000), pp. 119–158

    Google Scholar 

  52. N. Masmoudi, Ekman layers of rotating fluids: the case of general initial data. Commun. Pure Appl. Math. 53(4), 432–483 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  53. N. Masmoudi, Incompressible, inviscid limit of the compressible Navier-Stokes system. Annales de l’Institut Henri Poincaré Analyse Non Linéaire 18(2), 199–224 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  54. N. Masmoudi, Examples of singular limits in hydrodynamics, in Handbook of Differential Equations: Evolutionary Equations, vol. III, Handbook of Differential Equations (Elsevier/North-Holland, Amsterdam, 2007), pp. 195–275

    Book  MATH  Google Scholar 

  55. N. Masmoudi, Rigorous derivation of the anelastic approximation. Journal de Mathématiques Pures et Appliquées 88(3), 230–240 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  56. G. Métivier, S. Schochet, The incompressible limit of the non-isentropic Euler equations. Arch. Ration. Mech. Anal. 158(1), 61–90 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  57. G. Métivier, S. Schochet, Averaging theorems for conservative systems and the weakly compressible Euler equations. J. Differ. Equ. 187(1), 106–183 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  58. A. Novotný, I. Straškraba, Introduction to the Mathematical Theory of Compressible Flow. Oxford Lecture Series in Mathematics and Its Applications, vol. 27 (Oxford University Press, Oxford, 2004)

    Google Scholar 

  59. Y. Ogura, NA. Phillips, Scale analysis of deep and shallow convection in the atmosphere. J. Atmos. Sci. 19(2), 173–179 (1962)

    Google Scholar 

  60. S. Schochet, The compressible Euler equations in a bounded domain: existence of solutions and the incompressible limit. Commun. Math. Phys. 104(1), 49–75 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  61. S. Schochet, Fast singular limits of hyperbolic PDEs. J. Differ. Equ. 114(2), 476–512 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  62. S. Schochet, The mathematical theory of Low Mach number flows. ESAIM: Mathematical Modelling and Numerical Analysis-Modélisation Mathématique et Analyse Numérique 39(3), 441–458 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  63. RS. Strichartz, Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations. Duke Math. J. 44(3), 705–714 (1977)

    Google Scholar 

  64. L. Tartar, H-measures, a new approach for studying homogenisation, oscillations and concentration effects in partial differential equations. Proc. R. Soc. Edinb. Sect. A Math. 115(3–4), 193–230 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  65. S. Ukai, The incompressible limit and the initial layer of the compressible Euler equation. J. Math. Kyoto Univ. 26(2), 323–331 (1986)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Jiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Jiang, N., Masmoudi, N. (2017). Low Mach Number Limits and Acoustic Waves. In: Giga, Y., Novotny, A. (eds) Handbook of Mathematical Analysis in Mechanics of Viscous Fluids. Springer, Cham. https://doi.org/10.1007/978-3-319-10151-4_69-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10151-4_69-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10151-4

  • Online ISBN: 978-3-319-10151-4

  • eBook Packages: Springer Reference MathematicsReference Module Computer Science and Engineering

Publish with us

Policies and ethics