Skip to main content

Waves in Compressible Fluids: Viscous Shock, Rarefaction, and Contact Waves

  • Living reference work entry
  • First Online:
Handbook of Mathematical Analysis in Mechanics of Viscous Fluids
  • 353 Accesses

Abstract

This short article focuses on several one-dimensional model systems which often appear in the field of compressible viscous fluids, and discusses their Cauchy problems with prescribed far-field states. In particular, it describes the asymptotic behavior of the solutions in relation to the Riemann problems for the hyperbolic parts with the same far-field states. It has been expected that the solutions tend toward various asymptotic wave patterns as time goes to infinity, that is, various combinations of viscous shock, rarefaction, and contact waves. Many cases have been mathematically justified, but many others still remain open. The intent of this article is to give the reader introductory insights into how various primitive energy methods have contributed to the mathematical justifications, through some specific topics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. B. Barker, J. Humpherys, O. Laffite, K. Rudd, K. Zumbrun, Stability of isentropic Navier-Stokes shocks. Appl. Math. Lett. 21, 742–747 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. S. Chapman, T. Cowling, The Mathematical Theory of Non-Uniform Gases, 3rd edn. (Cambridge University Press, London, 1970)

    MATH  Google Scholar 

  3. C.J. van Duyn, L.A. Peletier, A class of similarity solutions of the nonlinear diffusion equation. Nonlinear Anal. 1, 223–233 (1976/77)

    Google Scholar 

  4. H. Freistühler, D. Serre, L 1 stability of shock waves in scalar viscous conservation laws. Comm. Pure Appl. Math. 51, 291–301 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. J. Goodman, Nonlinear asymptotic stability of viscous shock profiles for conservation laws. Arch. Rat. Mech. Anal. 95, 325–344 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  6. I. Hashimoto, A. Matsumura, Large-time behavior of solutions to an initial-boundary value problem on the half line for scalar viscous conservation law. Methods Appl. Anal. 14, 45–59 (2007)

    MathSciNet  MATH  Google Scholar 

  7. L. Hsiao, T.-P. Liu, Nonlinear diffusive phenomena of nonlinear hyperbolic systems. Chin. Ann. Math. Ser. B 14, 465–480 (1993)

    MathSciNet  MATH  Google Scholar 

  8. F. Huang, J. Li, A. Matsumura, Asymptotic stability of combination of viscous contact wave with rarefaction waves for one-dimensional compressible Navier-Stokes system. Arch. Rat. Mech. Anal. 197, 89–116 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. F. Huang, A. Matsumura, Stability of a composite wave of two viscous shock waves for the full compressible Navier-Stokes equation. Comm. Math. Phys. 289, 841–861 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. F. Huang, A. Matsumura, X. Shi, On the stability of contact discontinuity for compressible Navier-Stokes equations with free boundary. Osaka J. Math. 41, 193–210 (2004)

    MathSciNet  MATH  Google Scholar 

  11. F. Huang, A. Matsumura, Z. Xin, Stability of contact discontinuities for the 1-D compressible Navier-Stokes equations. Arch. Rat. Mech. Anal. 179, 55–77 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. F. Huang, T. Yang, Z. Xin, Contact discontinuity with general perturbations for gas motions. Adv. Math. 219, 1246–1297 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. J. Humpherys, O. Laffite, K. Zumbrun, Stability of isentropic viscous shock profiles in the high-Mach number limit. Comm. Math. Phys. 293, 1–36 (2010)

    Article  MathSciNet  Google Scholar 

  14. A.M. Il’in, O.A. Oleinik, Asymptotic behavior of the solutions of Cauchy problem for certain quasilinear equations for large time (Russian). Mat. Sbornik 51, 191–216 (1960)

    MathSciNet  Google Scholar 

  15. N. Itaya, A survey on the generalized Burgers’ equation with a pressure model term. J. Math. Kyoto Univ. 16, 223–240 (1976)

    MathSciNet  MATH  Google Scholar 

  16. S. Jiang, Large-time behavior of solutions to the equations of a one-dimensional viscous polytropic ideal gas in unbounded domains. Comm. Math. Phys. 200, 181–193 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. S. Jiang, Remarks on the asymptotic behavior of solutions to the compressible Navier-Stokes equations in the half-line. Proc. Roy. Soc. Edinb. Sect. A 132, 627–638 (2002)

    Article  MATH  Google Scholar 

  18. Y. Kanel’, On a model system of one-dimensional gas motion (Russian). Differencial’nya Uravnenija 4, 374–380 (1968)

    Google Scholar 

  19. M. Kato, Large time behavior of solutions to the generalized Burgers equations. Osaka J. Math. 44, 923–943 (2007)

    MathSciNet  MATH  Google Scholar 

  20. S. Kawashima, Large-time behavior of solutions to hyperbolic-parabolic systems of conservation laws and applications. Proc. Roy. Soc. Edinb. Sect. A 106, 169–194 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  21. S. Kawashima, A. Matsumura, Asymptotic stability of traveling wave solutions of systems for one-dimensional gas motion. Comm. Math. Phys. 101, 97–127 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  22. S. Kawashima, A. Matsumura, T. Nishida, On the fluid-dynamical approximation to the Boltzmann equation at the level of the Navier-Stokes equation. Comm. Math. Phys. 70, 97–124 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  23. S. Kawashima, A. Matsumura, K. Nishihara, Asymptotic behavior of solutions for the equations of a viscous heat-conductive gas. Proc. Jpn Acad. Ser.A 62, 249–252 (1986)

    Google Scholar 

  24. S. Kawashima, Y. Shizuta, On the normal form of the symmetric hyperbolic-parabolic systems associated with the conservation laws. Tohoku Math. J. 40, 449–464 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  25. A. V. Kazhikhov, On the theory of boundary-value problems for the equations of one-dimensional nonstationary motion of a viscous heat-conductive gas (Russian). Din. Sploshnoi Sredy, 50, 37–62 (1981)

    MATH  Google Scholar 

  26. P.D. Lax, Hyperbolic systems of conservation laws II. Commun. Pure Appl. Math. 10, 537–566 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  27. J. Li, Z. Liang, Some uniform estimates and large-time behavior of solutions to one-dimensional compressible Navier-Stokes system in unbounded domains with large data. Arch. Rat. Mech. Anal. 220, 1195–1208 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. T.-P. Liu, Nonlinear stability of shock waves for viscous conservation laws. Mem. Am. Math. Soc. 56(328) (1985)

    Google Scholar 

  29. T.-P. Liu, Pointwise convergence to shock waves for viscous conservation laws. Commun. Pure Appl. Math. 50, 1113–1182 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  30. Liu, T.-P., Z.-P. Xin, Nonlinear stability of rarefaction waves for compressible Navier-Stokes equations. Comm. Math. Phys. 118, 451–465 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  31. Liu, T.-P., S.-H. Yu, Viscous rarefaction waves. Bull. Inst. Math. Acad. Sin. (New Series) 5, 123–179 (2010)

    Google Scholar 

  32. T.-P. Liu, Y. Zeng, Time-asymptotic behavior of wave propagation around a viscous shock profile. Comm. Math. Phys. 290, 23–82 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. T.-P. Liu, Y. Zeng, Shock waves in conservation laws with physical viscosity. Mem. Am. Math. Soc. 235(1105) (2015)

    Google Scholar 

  34. C. Mascia, K. Zumbrun, Stability of small-amplitude shock profiles of symmetric hyperbolic-parabolic systems. Comm. Pure Appl. Math. 57, 841–876 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  35. A. Matsumura, Global existence and asymptotics of the solutions of the second-order quasilinear hyperbolic equations with the first-order dissipation. Pub. Res. Inst. Math. Sci. Kyoto Univ. 13, 349–379 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  36. A. Matsumura, Inflow and outflow problems in the half space for a one-dimensional isentropic model system of compressible viscous gas. Methods Appl. Anal. 8, 645–666 (2001)

    MathSciNet  MATH  Google Scholar 

  37. A. Matsumura, M. Mei, Nonlinear stability of viscous shock profile for a non-convex system of viscoelasticity. Osaka J. Math. 34, 589–603 (1997)

    MathSciNet  MATH  Google Scholar 

  38. A. Matsumura, T. Nishida, The initial value problem for the equations of motion of viscous and heat-conductive gases. J. Math. Kyoto Univ. 20, 67–104 (1980)

    MathSciNet  MATH  Google Scholar 

  39. A. Matsumura, K. Nishihara, On the stability of traveling wave solutions of a one-dimensional model system for compressible viscous gas. Jpn. J. Appl. Math. 2, 17–25 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  40. A. Matsumura, K. Nishihara, Asymptotics toward the rarefaction waves of the solutions of a one-dimensional model system for compressible viscous gas. Jpn J. Appl. Math. 3, 1–13 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  41. A. Matsumura, K. Nishihara, Global stability of the rarefaction wave of a one-dimensional model system for compressible viscous gas. Comm. Math. Phys. 144, 325–335 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  42. A. Matsumura, K. Nishihara, Asymptotic stability of traveling wave for scalar viscous conservation laws with non-convex nonlinearity. Commun. Math. Physics 165, 83–96 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  43. A. Matsumura, Y. Wang, Asymptotic stability of viscous shock wave for a one-dimensional isentropic model of viscous gas with density-dependent viscosity. Methods Appl. Anal. 17, 279–290 (2010)

    MathSciNet  MATH  Google Scholar 

  44. A. Matsumura, N. Yoshida, Asymptotic behavior of solutions to the Cauchy problem for the scalar viscous conservation law with partially linearly degenerate flux. SIAM J. Math. Anal. 44, 2526–2544 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  45. T. Nishida, Equations of motion of compressible viscous fluids, in Pattern and Waves, ed. by T. Nishida, M. Mimura, H. Fujii. (Kinokuniya/North-Holland, Amsterdam/Tokyo, 1986), pp. 97–128

    Google Scholar 

  46. J. Smoller, Shock Waves and Reaction-diffusion Equations, (Springer, New York/Berlin, 1983)

    Book  MATH  Google Scholar 

  47. A. Szepessy, Z. Xin, Nonlinear stability of viscous shock waves. Arch. Ration. Mech. Anal. 122, 53–103 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  48. H. F. Weinberger, Long-time behavior for a regularized scalar conservation law in the absence of genuine nonlinearity. Ann. Inst. H. Poincare Anal. Non Lineaire 7, 407–425 (1990)

    MathSciNet  MATH  Google Scholar 

  49. K. Zumbrun, Multidimensional stability of planar viscous shock waves. in Advances in the Theory of Shock Waves, Progress in Nonlinear Differential Equations and Their Application vol. 47, pp. 307–516. Birkhaüser Boston, Boston (2001)

    Google Scholar 

  50. K. Zumbrun, Stability of large-amplitude shock waves of compressible Navier-Stokes equations, in Handbook of Mathematical Fluid Dynamics, III, ed. by S.J. Friedlander, R. Narasimhan. (Elsevier, North Holland, 2004)

    Google Scholar 

  51. K. Zumbrun, Stability and dynamics of viscous shock waves, nonlinear conservation laws and applications, in Nonlinear Conservation Laws and Applications, ed. by A. Blessan, G. Chen, M. Lowicka, D. Wang IMA Vol. Math. Appl. 153, pp. 123–167. Springer, New York (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akitaka Matsumura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Matsumura, A. (2016). Waves in Compressible Fluids: Viscous Shock, Rarefaction, and Contact Waves. In: Giga, Y., Novotny, A. (eds) Handbook of Mathematical Analysis in Mechanics of Viscous Fluids. Springer, Cham. https://doi.org/10.1007/978-3-319-10151-4_60-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10151-4_60-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-10151-4

  • eBook Packages: Springer Reference MathematicsReference Module Computer Science and Engineering

Publish with us

Policies and ethics