Skip to main content

Concepts of Solutions in the Thermodynamics of Compressible Fluids

  • Living reference work entry
  • First Online:
  • 351 Accesses

Abstract

The objective of this chapter is to highlight the recent development of the mathematical theory of complete fluids. The word complete means the governing system of equations is rich enough to incorporate the basic physical principles, in particular the first, second, and third laws of thermodynamics, in a correct and integral way into the mathematical model. In the whole text, the platform of classical continuum mechanics is adopted, where the fluid motion is described in terms of observable macroscopic quantities: the mass density, the (absolute) temperature, and the (bulk) velocity.

This is a preview of subscription content, log in via an institution.

References

  1. J.T. Beale, T. Kato, A. Majda, Remarks on the breakdown of smooth solutions for the 3-D Euler equations. Commun. Math. Phys. 94(1), 61–66 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  2. S.E. Bechtel, F.J. Rooney, M.G. Forest, Connection between stability, convexity of internal energy, and the second law for compressible Newtonian fuids. J. Appl. Mech. 72, 299–300 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. F. Belgiorno, Notes on the third law of thermodynamics, i. J. Phys. A 36, 8165–8193 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. F. Belgiorno, Notes on the third law of thermodynamics, ii. J. Phys. A 36, 8195–8221 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. S. Benzoni-Gavage, D. Serre, Multidimensional Hyperbolic Partial Differential Equations, First Order Systems and Applications. Oxford Mathematical Monographs (The Clarendon Press Oxford University Press, Oxford, 2007)

    MATH  Google Scholar 

  6. D. Bresch, B. Desjardins, Stabilité de solutions faibles globales pour les équations de Navier-Stokes compressibles avec température. C.R. Acad. Sci. Paris 343, 219–224 (2006)

    Google Scholar 

  7. D. Bresch, B. Desjardins, On the existence of global weak solutions to the Navier-Stokes equations for viscous compressible and heat conducting fluids. J. Math. Pures Appl. 87, 57–90 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. T. Buckmaster, Onsager’s conjecture almost everywhere in time. Commun. Math. Phys. 333(3), 1175–1198 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. M. Bulíček, J. Málek, K.R. Rajagopal, Navier’s slip and evolutionary Navier-Stokes-like systems with pressure and shear- rate dependent viscosity. Indiana Univ. Math. J. 56, 51–86 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. E. Chiodaroli, E. Feireisl, O. Kreml, On the weak solutions to the equations of a compressible heat conducting gas. Anna. Inst. Poincaré, Anal. Nonlinear 32, 225–243 (2015)

    Google Scholar 

  11. A.J. Chorin, J.E. Marsden, A Mathematical Introduction to Fluid Mechanics (Springer, New York, 1979)

    Book  MATH  Google Scholar 

  12. P. Constantin, C. Fefferman, Direction of vorticity and the problem of global regularity for the Navier-Stokes equations. Indiana Univ. Math. J. 42(3), 775–789 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  13. C.M. Dafermos, The second law of thermodynamics and stability. Arch. Ration. Mech. Anal. 70, 167–179 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  14. S.R. de Groot, P. Mazur, Nonequilibrium Thermodynamics (Dover Publications, Inc., New York, 1984) Reprint of the 1962 original.

    Google Scholar 

  15. C. De Lellis, L. Székelyhidi, Jr., On admissibility criteria for weak solutions of the Euler equations. Arch. Ration. Mech. Anal. 195(1), 225–260 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. C. De Lellis, L. Székelyhidi, Jr., Dissipative continuous Euler flows. Invent. Math. 193(2), 377–407 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. C. De Lellis, L. Székelyhidi, Jr., Dissipative Euler flows and Onsager’s conjecture. J. Eur. Math. Soc. (JEMS) 16(7), 1467–1505 (2014)

    Google Scholar 

  18. J.L. Ericksen, Introduction to the Thermodynamics of Solids, revised ed. Applied Mathematical Sciences, vol. 131 (Springer, New York, 1998)

    Google Scholar 

  19. J. Fan, S. Jiang, Y. Ou, A blow-up criterion for compressible viscous heat-conductive flows. Ann. Inst. H. Poincaré Anal. Non Linéaire 27(1), 337–350 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. C.L. Fefferman, Existence and smoothness of the Navier-Stokes equation, in The Millennium Prize Problems (Clay Mathematical Inst., Cambridge, 2006), pp. 57–67

    MATH  Google Scholar 

  21. E. Feireisl, Dynamics of Viscous Compressible Fluids (Oxford University Press, Oxford, 2004)

    MATH  Google Scholar 

  22. E. Feireisl, Relative entropies in thermodynamics of complete fluid systems. Discret. Cont. Dyn. Syst. Ser. A 32, 3059–3080 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. E. Feireisl, T. Karper, A. Novotný, On a convergent numerical scheme for the full Navier-Stokes-Fourier system. IMA J. Numer. Math. 36(4), 2016, 1477–1535

    Article  Google Scholar 

  24. E. Feireisl, O. Kreml, A. Vasseur, Stability of the isentropic Riemann solutions of the full multidimensional Euler system. SIAM J. Math. Anal. 47, 2416–2425 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. E. Feireisl, A. Novotný, Singular Limits in Thermodynamics of Viscous Fluids (Birkhäuser-Verlag, Basel, 2009)

    Book  MATH  Google Scholar 

  26. E. Feireisl, A. Novotný, Weak-strong uniqueness property for the full Navier-Stokes-Fourier system. Arch. Ration. Mech. Anal. 204, 683–706 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. E. Feireisl, A. Novotný, Y. Sun, A regularity criterion for the weak solutions to the Navier-Stokes-Fourier system. Arch. Ration. Mech. Anal. 212(1), 219–239 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. G. Gallavotti, Statistical Mechanics: A Short Treatise (Springer, Heidelberg, 1999)

    Book  MATH  Google Scholar 

  29. G. Gallavotti, Foundations of Fluid Dynamics (Springer, New York, 2002)

    Book  MATH  Google Scholar 

  30. D. Hoff, Dynamics of singularity surfaces for compressible viscous flows in two space dimensions. Commun. Pure Appl. Math. 55, 1365–1407 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  31. D. Hoff, H.K. Jenssen, Symmetric nonbarotropic flows with large data and forces. Arch. Ration. Mech. Anal. 173, 297–343 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  32. D. Hoff, M.M. Santos, Lagrangean structure and propagation of singularities in multidimensional compressible flow. Arch. Ration. Mech. Anal. 188(3), 509–543 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  33. X. Huang, J. Li, Y. Wang, Serrin-type blowup criterion for full compressible Navier-Stokes system. Arch. Ration. Mech. Anal. 207(1), 303–316 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  34. D. Jesslé, B.J. Jin, A. Novotný, Navier-Stokes-Fourier system on unbounded domains: weak solutions, relative entropies, weak-strong uniqueness. SIAM J. Math. Anal. 45(3), 1907–1951 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. P.-L. Lions, Mathematical Topics in Fluid Dynamics, Vol.1, Incompressible Models (Oxford Science Publication, Oxford, 1996)

    Google Scholar 

  36. A. Matsumura, T. Nishida, The initial value problem for the equations of motion of viscous and heat-conductive gases. J. Math. Kyoto Univ. 20, 67–104 (1980)

    MathSciNet  MATH  Google Scholar 

  37. A. Matsumura, T. Nishida, The initial value problem for the equations of motion of compressible and heat conductive fluids. Commun. Math. Phys. 89, 445–464 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  38. N.V. Priezjev, S.M. Troian, Influence of periodic wall roughness on the slip behaviour at liquid/solid interfaces: molecular versus continuum predictions. J. Fluid Mech. 554, 25–46 (2006)

    Article  MATH  Google Scholar 

  39. G. Prodi, Un teorema di unicità per le equazioni di Navier-Stokes. Ann. Mat. Pura Appl. 48, 173–182 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  40. J. Serrin, On the interior regularity of weak solutions of the Navier-Stokes equations. Arch. Ration. Mech. Anal. 9, 187–195 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  41. J. Smoller, Shock Waves and Reaction-Diffusion Equations (Springer, New York, 1967)

    MATH  Google Scholar 

  42. Y. Sun, C. Wang, Z. Zhang, A Beale-Kato-Majda criterion for three dimensional compressible viscous heat-conductive flows. Arch. Ration. Mech. Anal. 201(2), 727–742 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  43. T. Tao, Localisation and compactness properties of the Navier-Stokes global regularity problem. Anal. PDE 6(1), 25–107 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  44. A. Valli, An existence theorem for compressible viscous fluids. Ann. Mat. Pura Appl. (4) 130, 197–213 (1982)

    Google Scholar 

  45. H. Wen, C. Zhu, Blow-up criterions of strong solutions to 3D compressible Navier-Stokes equations with vacuum. Adv. Math. 248, 534–572 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  46. C.H. Wilcox, Sound Propagation in Stratified Fluids. Applied Mathematics Series, vol. 50 (Springer, Berlin, 1984)

    Google Scholar 

  47. R.Kh. Zeytounian, Asymptotic Modelling of Fluid Flow Phenomena. Fluid Mechanics and Its Applications, vol. 64 (Kluwer Academic Publishers, Dordrecht, 2002)

    Google Scholar 

  48. W.P. Ziemer, Weakly Differentiable Functions (Springer, New York, 1989)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The research of E.F. leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007–2013)/ ERC Grant Agreement 320078. The Institute of Mathematics of the Academy of Sciences of the Czech Republic is supported by RVO:67985840.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduard Feireisl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Feireisl, E. (2016). Concepts of Solutions in the Thermodynamics of Compressible Fluids. In: Giga, Y., Novotny, A. (eds) Handbook of Mathematical Analysis in Mechanics of Viscous Fluids. Springer, Cham. https://doi.org/10.1007/978-3-319-10151-4_31-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10151-4_31-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-10151-4

  • eBook Packages: Springer Reference MathematicsReference Module Computer Science and Engineering

Publish with us

Policies and ethics