Skip to main content

Variational Modeling and Complex Fluids

  • Living reference work entry
  • First Online:

Abstract

In this chapter, a general energetic variational framework for modeling the dynamics of complex fluids is introduced. The approach reveals and focuses on the couplings and competitions between different mechanisms involved for specific materials, including energetic contributions vs. kinematic transport relations, conservative parts vs. dissipative parts and kinetic parts vs. free energy parts of the systems, macroscopic deformation or flows vs. microscopic deformations, bulk effects vs. boundary conditions, etc. One has to notice that these variational approaches are motivated by the seminal works of Rayleigh (Proc Lond Math Soc 1(1):357–368, 1871) and Onsager (Phys Rev 37(4):405, 1931; Phys Rev 38(12):2265, 1931). In this chapter, the underlying physical principles and background, as well as the limitations of these approaches, are demonstrated. Besides the classical models for ideal fluids and elastic solids, these approaches are employed for models of viscoelastic fluids, diffusion, and mixtures.

This is a preview of subscription content, log in via an institution.

References

  1. H. Abels, H. Garcke, G. Grun, Thermodynamically consistent, frame indifferent diffuse interface models for incompressible two-phase flows with different densities. Math. Models Methods Appl. Sci. 22(03), (2012)

    Google Scholar 

  2. R. Abraham, J.E. Marsden, Foundations of Mechanics (Benjamin/Cummings Publishing Company Reading, Massachusetts, 1978)

    MATH  Google Scholar 

  3. S.M. Allen, J.W. Cahn. A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27(6), 1085–1095 (1979)

    Article  Google Scholar 

  4. D. Anderson, G.B. McFadden, A diffuse-interface description of internal waves in a near-critical fluid. Phys. Fluids (1994-present) 9(7), 1870–1879 (1997)

    Google Scholar 

  5. V.I. Arnol’d, Mathematical Methods of Classical Mechanics, vol. 60 (Springer, New York, 1989)

    Book  MATH  Google Scholar 

  6. R. Balescu, Statistical Dynamics: Matter Out of Equilibrium (Imperial College Press, London, 1997)

    Book  MATH  Google Scholar 

  7. J.W. Barrett, C. Schwab, E. Suli, Existence of global weak solutions for some polymeric flow models. Math. Models Methods Appl. Sci. 15(06), 939–983 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. S. Bartels, Numerical Methods for Nonlinear Partial Differential Equations. Number 47 in Springer Series in Computational Mathematics (Springer International Publishing, Cham, 2015)

    Google Scholar 

  9. G.K. Batchelor, An Introduction to Fluid Dynamics (Cambridge university press, Cambridge, 1967)

    MATH  Google Scholar 

  10. J. Bear, Dynamics of Fluids in Porous Media (Courier Corporation, New York, 2013)

    MATH  Google Scholar 

  11. V. Berdichevsky, Variational Principles of Continuum Mechanics: I. Fundamentals (Springer Science & Business Media, Berlin/Heidelberg, 2009)

    Google Scholar 

  12. A. Beris, S. Edwards, Thermodynamics of Flowing Systems: With Internal Microstructure (Oxford University Press, New York, 1994)

    Google Scholar 

  13. C. Berti, D. Gillespie, J.P. Bardhan, R.S. Eisenberg, C. Fiegna, Comparison of three-dimensional Poisson solution methods for particle-based simulation and inhomogeneous dielectrics. Phys. Rev. E 86(1), 011912 (2012)

    Google Scholar 

  14. R. Bird, C. Curtiss, R. Armstrong, O. Hassager, Dynamics of Polymeric Liquids. Volume 2: Kinetic Theory (A Wiley-Interscience Publication, John Wiley & Sons, Brisbane/Toronto/New York, 1987)

    Google Scholar 

  15. R.B. Bird, R.C. Armstrong, O. Hassager, Dynamics of Polymeric Liquids. Volume 1: Fluid Mechanics (A Wiley-Interscience Publication, John Wiley & Sons, Brisbane/Toronto/New York, 1987)

    Google Scholar 

  16. T. Blesgen, A generalization of the Navier-Stokes equations to two-phase flows. J. Phys. D: Appl. Phys. 32(10), 1119 (1999)

    Google Scholar 

  17. B. Bourdin, G.A. Francfort, J.-J. Marigo, The variational approach to fracture. J. Elast. 91(1-3), 5–148 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. F. Boyer, Mathematical study of multi-phase flow under shear through order parameter formulation. Asymptot. Anal. 20(2), 175–212 (1999)

    MathSciNet  MATH  Google Scholar 

  19. F. Boyer, A theoretical and numerical model for the study of incompressible mixture flows. Comput. Fluids 31(1), 41–68 (2002)

    Article  MATH  Google Scholar 

  20. F. Boyer, C. Lapuerta, Study of a three component Cahn-Hilliard flow model. ESAIM: Math. Model. Numer. Anal. 40(04), 653–687 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. J. Brannick, A. Kirshtein, C. Liu, Dynamics of multi-component flows: diffusive interface methods with energetic variational approaches, in Reference Module in Materials Science and Materials Engineering, ed. by S. Hashmi, M. Buggy (Elsevier, Oxford, 2016), pp. 1–7

    Google Scholar 

  22. J. Brannick, C. Liu, T. Qian, H. Sun, Diffuse interface methods for multiple phase materials: an energetic variational approach. Numer. Math. Theory Methods Appl. 8(02), 220–236 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. L. Caffarelli, Non-local diffusions, drifts and games, in Nonlinear Partial Differential Equations (Springer, Berlin/Heidelberg, 2012), pp. 37–52

    Book  MATH  Google Scholar 

  24. J. Cahn, S. Allen, A microscopic theory for domain wall motion and its experimental verification in Fe-Al alloy domain growth kinetics. Le Journal de Physique Colloques 38(C7), C7–51 (1977)

    Article  Google Scholar 

  25. J.W. Cahn, J.E. Hilliard, Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28(2), 258–267 (1958)

    Google Scholar 

  26. M.C. Calderer, Mathematical problems of liquid crystal flows. Math. Methods Appl. Sci. 17(3), 171–188 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  27. M.C. Calderer, C. Liu, Liquid crystal flow: dynamic and static configurations. SIAM J. Appl. Math. 60(6), 1925–1949 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  28. M.C. Calderer, C. Liu, Poiseuille flow of nematic liquid crystals. Int. J. Eng. Sci. 38(9), 1007–1022 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  29. Y.-C. Chang, T. Hou, B. Merriman, S. Osher, A level set formulation of Eulerian interface capturing methods for incompressible fluid flows. J. Comput. Phys. 124(2), 449–464 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  30. J.-Y. Chemin, N. Masmoudi, About lifespan of regular solutions of equations related to viscoelastic fluids. SIAM J. Math. Anal. 33(1), 84–112 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  31. H.-Y. Chen, D. Jasnow, J. Vinals, Interface and contact line motion in a two phase fluid under shear flow. Phys. Rev. Lett. 85(8), 1686 (2000)

    Google Scholar 

  32. S. Chen, G.D. Doolen, X. He, X. Nie, R. Zhang, Recent advances in lattice Boltzmann methods. Fluid Dynamics at Interfaces (Gainesville, FL, 1998) (Cambridge University Press, Cambridge, 1999), pp. 352–363

    Google Scholar 

  33. P.G. Ciarlet, Three-Dimensional Elasticity. Volume 1 of Mathematical Elasticity (Elsevier, Burlington, 1988)

    Google Scholar 

  34. P.G. Ciarlet, Theory of Shells (Elsevier, Burlington, 2000)

    MATH  Google Scholar 

  35. L.P. Cook, E. Nwankwo, G. Schleiniger, B. Wood, Mathematical analysis of viscometric (polymer) flow fields in capillaries: Taylor dispersion revisited. J. Eng. Math. 45(3-4), 269–282 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  36. C.M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, 3rd edn. (Springer-Verlag, Berlin/Heidelberg, 2010)

    Book  MATH  Google Scholar 

  37. P.-G. De Gennes, F. Brochard-Wyart, D. Quere, Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves (Springer Science & Business Media, New York, 2004)

    Book  MATH  Google Scholar 

  38. P.-G. De Gennes, J. Prost, The Physics of Liquid Crystals. International Series of Monographs on Physics (Clarendon Press, Oxford, 1995)

    Google Scholar 

  39. S.R. De Groot, P. Mazur, Non-Equilibrium Thermodynamics (Courier Corporation, New York, 2013)

    MATH  Google Scholar 

  40. A.P. Deshpande, J.M. Krishnan, S. Kumar, Rheology of Complex Fluids (Springer Science & Business Media, New York/London, 2010)

    MATH  Google Scholar 

  41. R. DiPerna, P.-L. Lions, On the Fokker-Planck-Boltzmann equation. Commun. Math. Phys. 120(1), 1–23 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  42. R.J. DiPerna, P.-L. Lions, On the Cauchy problem for Boltzmann equations: global existence and weak stability. Ann. Math. 130, 321–366 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  43. R.J. DiPerna, P.-L. Lions, Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98(3), 511–547 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  44. M. Doi, S.F. Edwards, The Theory of Polymer Dynamics, vol. 73 (Oxford University Press, Oxford, 1988)

    Google Scholar 

  45. Q. Du, B. Guo, J. Shen, Fourier spectral approximation to a dissipative system modeling the flow of liquid crystals. SIAM J. Numer. Anal. 39(3), 735–762 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  46. Q. Du, C. Liu, R. Ryham, X. Wang, A phase field formulation of the Willmore problem. Nonlinearity 18(3), 1249 (2005)

    Google Scholar 

  47. Q. Du, C. Liu, X. Wang, A phase field approach in the numerical study of the elastic bending energy for vesicle membranes. J. Comput. Phys. 198(2), 450–468 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  48. N. Dunford, J. Schwartz, Linear Operators: General Theory. Pure and Applied Mathematics (Interscience Publishers, New York/London, 1958)

    MATH  Google Scholar 

  49. A. Einstein, Uber die von der molekularkinetischen Theorie der Warme geforderte Bewegung von in ruhenden Flussigkeiten suspendierten Teilchen. Annalen der physik (4), 549–560 (1905)

    Article  MATH  Google Scholar 

  50. L.C. Evans, Partial Differential Equations. Graduate Studies in Mathematics (American Mathematical Society, Providence, 2010)

    Google Scholar 

  51. K. Feigl, M. Laso, H.C. Oettinger, CONNFFESSIT approach for solving a two-dimensional viscoelastic fluid problem. Macromolecules 28(9), 3261–3274 (1995)

    Article  Google Scholar 

  52. E. Feireisl, Mathematical theory of compressible, viscous, and heat conducting fluids. Comput. Math. Appl. 53(3), 461–490 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  53. C.W. Gardiner, Others, Handbook of Stochastic Methods, vol. 4 (Springer, Berlin, 1985)

    Google Scholar 

  54. I.M. Gelfand, S.V. Fomin, Calculus of Variations. Selected Russian Publications in the Mathematical Sciences (Prentice-Hall, Englewood Cliffs, 1963)

    Google Scholar 

  55. M. Giaquinta, S. Hildebrandt, Calculus of Variations I. Number 310 in Grundlehren der Mathematischen Wissenschaften (Springer-Verlag, Berlin/Heidelberg, 2004)

    Google Scholar 

  56. A. Greven, G. Keller, G. Warnecke, Entropy. Princeton Series in Applied Mathematics (Princeton University Press, Princeton, 2003)

    Google Scholar 

  57. C. Guillope, J. Saut, Existence results for the flow of viscoelastic fluids with a differential constitutive law. Nonlinear Anal. Theory Methods Appl. 15(9), 849–869 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  58. C. Guillope, J.-C. Saut, Global existence and one-dimensional nonlinear stability of shearing motions of viscoelastic fluids of Oldroyd type. RAIRO-Modelisation Mathematique et Analyse Numerique 24(3), 369–401 (1990)

    MathSciNet  MATH  Google Scholar 

  59. M.E. Gurtin, An Introduction to Continuum Mechanics (Academic Press, Boston, 1982)

    MATH  Google Scholar 

  60. M.E. Gurtin, Thermomechanics of Evolving Phase Boundaries in the Plane, vol. 1 (Oxford University Press, Oxford, 1993)

    MATH  Google Scholar 

  61. M.E. Gurtin, E. Fried, L. Anand, The Mechanics and Thermodynamics of Continua (Cambridge University Press, Cambridge, 2010)

    Book  Google Scholar 

  62. M.E. Gurtin, D. Polignone, J. Vinals, Two-phase binary fluids and immiscible fluids described by an order parameter. Math. Models Methods Appl. Sci. 6(06), 815–831 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  63. T.Y. Hou, J.S. Lowengrub, M.J. Shelley, The long-time motion of vortex sheets with surface tension. Phys. Fluids (1994-present) 9(7), 1933–1954 (1997)

    Google Scholar 

  64. Y. Hyon, J.A. Carrillo, Q. Du, C. Liu, A maximum entropy principle based closure method for macro-micro models of polymeric materials. Kinet. Relat. Mod. 1(2), 171–184 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  65. Y. Hyon, Q. Du, C. Liu, An enhanced macroscopic closure approximation to the micro-macro FENE model for polymeric materials. Multiscale Model. Simul. 7(2), 978–1002 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  66. Y. Hyon, Q. Du, C. Liu, On some probability density function based moment closure approximations of micro-macro models for viscoelastic polymeric fluids. J. Comput. Theor. Nanosci. 7(4), 756–765 (2010)

    Article  Google Scholar 

  67. Y. Hyon, D.Y. Kwak, C. Liu. Energetic variational approach in complex fluids: maximum dissipation principle. DCDS-A 24(4), 1291–1304 (2010)

    MathSciNet  MATH  Google Scholar 

  68. J.N. Israelachvili, Intermolecular and Surface Forces: Revised Third Edition (Academic Press, Waltham, 2011)

    Google Scholar 

  69. D. Jacqmin, Calculation of two-phase Navier-Stokes flows using phase-field modeling. J. Comput. Phys. 155(1), 96–127 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  70. R.L. Jerrard, H.M. Soner, Dynamics of Ginzburg-Landau vortices. Arch. Ration. Mech. Anal. 142(2), 99–125 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  71. D. Joseph, Fluid dynamics of two miscible liquids with diffusion and gradient stresses. Eur. J. Mech. B Fluids 9(6), 565–596 (1990)

    MathSciNet  Google Scholar 

  72. D.D. Joseph, Y. Renardy, Fundamentals of Two-Fluid Dynamics. Part I: Mathematical Theory and Applications. Volume 3 of Interdisciplinary Applied Mathematics (Springer-Verlag, New York, 1993)

    Google Scholar 

  73. D.D. Joseph, Y. Renardy, Fundamentals of Two-Fluid Dynamics. Part II: Lubricated Transport, Drops and Miscible Liquids. Volume 4 of Interdisciplinary Applied Mathematics (Springer-Verlag, New York, 1993)

    Google Scholar 

  74. R. Kubo, The fluctuation-dissipation theorem. Rep. Prog. Phys. 29(1), 255 (1966)

    Google Scholar 

  75. O.A. Ladyzhenskaya, New equations for the description of the motions of viscous incompressible fluids, and global solvability for their boundary value problems. Proc Steklov Inst. Math. 102, 95–118 (1967)

    MathSciNet  Google Scholar 

  76. L.D. Landau, E.M. Lifshitz, Fluid Mechanics. Volume 6 of Course of Theoretical Physics, second english edition (Pergamon Press, Oxford, 1987)

    Google Scholar 

  77. R.G. Larson, The Structure and Rheology of Complex Fluids (Oxford University Press, New York, 1999)

    Google Scholar 

  78. F.M. Leslie, Theory of flow phenomena in liquid crystals, in Advances in Liquid Crystals, vol. 4, revised edition (Academic press, New York/London, 2013), pp. 1–81 of 224

    Google Scholar 

  79. F. Lin, Some dynamical properties of Ginzburg-Landau vortices. Commun. Pure Appl. Math. 49(4), 323–360 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  80. F. Lin, P. Zhang, On the hydrodynamic limit of Ginzburg-Landau vortices. Discret. Contin. Dyn. Syst. 6(1), 121–142 (2000)

    MathSciNet  MATH  Google Scholar 

  81. F.H. Lin, Solutions of Ginzburg-Landau equations and critical points of the renormalized energy. Annales de l’IHP Analyse non lineaire 12, 599–622 (1995)

    Google Scholar 

  82. F.-H. Lin, C. Liu, Nonparabolic dissipative systems modeling the flow of liquid crystals. Commun. Pure Appl. Math. 48(5), 501–537 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  83. F.H. Lin, C. Liu, Static and dynamic theories of liquid crystals. J. Partial Differ. Equ. 14(4), 289–330 (2001)

    MathSciNet  MATH  Google Scholar 

  84. F.-H. Lin, C. Liu, P. Zhang, On a micro-macro model for polymeric fluids near equilibrium. Commun. Pure Appl. Math. 60(6), 838–866 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  85. P.-L. Lions, N. Masmoudi, Global solutions for some Oldroyd models of non-Newtonian flows. Chin. Ann. Math. 21(02), 131–146 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  86. C. Liu, Dynamic theory for incompressible smectic-A liquid crystals: existence and regularity. Discret. Contin. Dyn. Syst. 6(3), 591–608 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  87. C. Liu, T. Qian, X. Xu, Hydrodynamic boundary conditions for one-component liquid-gas flows on non-isothermal solid substrates. Commun. Math. Sci. 10(4), 1027–1053, (2012)

    Article  MathSciNet  MATH  Google Scholar 

  88. C. Liu, J. Shen, A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method. Phys. D: Nonlinear Phenom. 179(3), 211–228 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  89. C. Liu, J. Shen, X. Yang, Decoupled Energy Stable Schemes for a Phase-Field Model of Two-Phase Incompressible Flows with Variable Density. J. Sci. Comput. 62(2), 601–622 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  90. C. Liu, N.J. Walkington, Approximation of liquid crystal flows. SIAM J. Numer. Anal. 37(3), 725–741 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  91. C. Liu, N.J. Walkington, An Eulerian description of fluids containing visco-elastic particles. Arch. Ration. Mech. Anal. 159(3), 229–252 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  92. C. Liu, N.J. Walkington, Mixed methods for the approximation of liquid crystal flows. ESAIM: Math. Model. Numer. Anal.-Model. Math. et Anal. Numer. 36(2), 205–222 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  93. J. Lowengrub, L. Truskinovsky, Quasi-incompressible Cahn-Hilliard fluids and topological transitions. Proc. R. Soc. Lond. Ser. A: Math. Phys. Eng. Sci. 454(1978), 2617–2654 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  94. A.J. Majda, A.L. Bertozzi, Vorticity and Incompressible Flow, vol. 27 (Cambridge University Press, Cambridge, 2002)

    MATH  Google Scholar 

  95. G. McFadden, A. Wheeler, R. Braun, S. Coriell, R. Sekerka, Phase-field models for anisotropic interfaces. Phys. Rev. E 48(3), 2016 (1993)

    Google Scholar 

  96. G.B. McFadden, A. Wheeler, D. Anderson, Thin interface asymptotics for an energy/entropy approach to phase-field models with unequal conductivities. Phys. D: Nonlinear Phenom. 144(1), 154–168 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  97. E. McMillan, A Theory of Anisotropic Fluid. Ph.D. thesis, University of Minnesota, 1987

    Google Scholar 

  98. W. Mullins, R. Sekerka, On the thermodynamics of crystalline solids. J. Chem. Phys. 82(11), 5192–5202 (1985)

    Article  MathSciNet  Google Scholar 

  99. National Materials Advisory Board, National Research Council, Liquid Crystalline Polymers (The National Academies Press, Washington, D.C., 1990)

    Google Scholar 

  100. L. Onsager, Reciprocal relations in irreversible processes. I. Phys. Rev. 37(4), 405 (1931)

    Google Scholar 

  101. L. Onsager, Reciprocal relations in irreversible processes. II. Phys. Rev. 38(12), 2265 (1931)

    Google Scholar 

  102. Z.-C. Ou-Yang, J.-X. Liu, Y.-Z. Xie, X. Yu-Zhang, Geometric Methods in the Elastic Theory of Membranes in Liquid Crystal Phases (World Scientific, Singapore/River Edge, 1999)

    Book  MATH  Google Scholar 

  103. J. Philibert, One and a half century of diffusion: Fick, Einstein, before and beyond. Diffus. Fundam. 2(1), 1–10 (2005)

    MathSciNet  Google Scholar 

  104. T. Qian, X.-P. Wang, P. Sheng, Molecular scale contact line hydrodynamics of immiscible flows. Phys. Rev. E 68(1), 016306 (2003)

    Google Scholar 

  105. T. Qian, X.-P. Wang, P. Sheng, A variational approach to moving contact line hydrodynamics. J. Fluid Mech. 564, 333–360 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  106. L. Rayleigh, Some general theorems relating to vibrations. Proc. Lond. Math. Soc. 1(1), 357–368 (1871)

    MathSciNet  Google Scholar 

  107. M. Renardy, An existence theorem for model equations resulting from kinetic theories of polymer solutions. SIAM J. Math. Anal. 22(2), 313–327 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  108. J.-F. Rodrigues, On the mathematical analysis of thick fluids. J. Math. Sci. 210(6), 835–848 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  109. J.S. Rowlinson, B. Widom, Molecular Theory of Capillarity (Dover Publications, Mineola, 2002)

    Google Scholar 

  110. R. Ryham, C. Liu, L. Zikatanov, Mathematical models for the deformation of electrolyte droplets. Discret. Contin. Din. Syst. Ser. B 8(3), 649–661 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  111. R.J. Ryham, An Energetic Variational Approach to Mathematical Modeling of Charged Fluids: Charge Phases, Simulation and Well Posedness. Ph.D. thesis, Pennsylvania State University, 2006

    Google Scholar 

  112. W.R. Schowalter, Mechanics of Non-Newtonian Fluids (Pergamon Press, Oxford, 1978)

    Google Scholar 

  113. U. Seifert, Vesicles of toroidal topology. Phys. Rev. Lett. 66(18), 2404 (1991)

    Google Scholar 

  114. U. Seifert, Curvature-induced lateral phase segregation in two-component vesicles. Phys. Rev. Lett. 70(9), 1335 (1993)

    Google Scholar 

  115. H. Sun, C. Liu, On energetic variational approaches in modeling the nematic liquid crystal flows. Discret. Contin. Dyn. Syst. 23(2), 455–475 (2009)

    MathSciNet  MATH  Google Scholar 

  116. H. Sun, C. Liu, The slip boundary condition in the dynamics of solid particles immersed in Stokesian flows. Solid State Commun. 150(21), 990–1002 (2010)

    Article  Google Scholar 

  117. J.E. Taylor, J.W. Cahn, Linking anisotropic sharp and diffuse surface motion laws via gradient flows. J. Stat. Phys. 77(1-2), 183–197 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  118. R. Temam, Navier-Stokes Equations and Nonlinear Functional Analysis, vol. 66 (SIAM, Philadelphia, 1995)

    Book  MATH  Google Scholar 

  119. R. Temam, A. Miranville, Mathematical Modeling in Continuum Mechanics (Cambridge University Press, Cambridge, 2005)

    Book  MATH  Google Scholar 

  120. A.-K. Tornberg, M.J. Shelley, Simulating the dynamics and interactions of flexible fibers in Stokes flows. J. Comput. Phys. 196(1), 8–40 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  121. L. Utracki, B. Favis, Polymer Alloys and Blends, vol. 4 (Marcel Dekker, New York, 1989)

    Google Scholar 

  122. J.L. Vazquez, The Porous Medium Equation: Mathematical Theory (Oxford University Press, Oxford, 2007)

    MATH  Google Scholar 

  123. J.L. Vazquez, Nonlinear diffusion with fractional Laplacian operators, in Nonlinear Partial Differential Equations (Springer, Berlin/Heidelberg, 2012), pp. 271–298

    MATH  Google Scholar 

  124. L. Wan, S. Xu, M. Liao, C. Liu, P. Sheng, Self-consistent approach to global charge neutrality in electrokinetics: a surface potential trap model. Phys. Rev. X 4(1), 011042 (2014)

    Google Scholar 

  125. X.-S. Wang, D. He, J.J. Wylie, H. Huang, Singular perturbation solutions of steady-state Poisson-Nernst-Planck systems. Phys. Rev. E 89(2), 022722 (2014)

    Google Scholar 

  126. Weinan E, Dynamics of vortices in Ginzburg-Landau theories with applications to superconductivity. Phys. D: Nonlinear Phenom. 77(4), 383–404 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  127. J.L. West, Polymer-dispersed liquid crystals, in Liquid-Crystalline Polymers, Chapter 32, ed. by R.A. Weiss, C.K. Ober. Volume 435 of ACS Symposium Series (ACS Publications, Washington, DC, 1990), pp. 475–495

    Google Scholar 

  128. A.A. Wheeler, W. Boettinger, G. McFadden, Phase-field model for isothermal phase transitions in binary alloys. Phys. Rev. A 45(10), 7424 (1992)

    Google Scholar 

  129. M. Wheeler, T. Wick, W. Wollner, An augmented-Lagrangian method for the phase-field approach for pressurized fractures. Comput. Methods Appl. Mech. Eng. 271, 69–85 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  130. T. Willmore, Riemannian Geometry. Oxford Science Publications (Clarendon Press, Oxford, 1996)

    MATH  Google Scholar 

  131. H. Wu, T.-C. Lin, C. Liu, Diffusion limit of kinetic equations for multiple species charged particles. Arch. Ration. Mech. Anal. 215(2), 419–441 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  132. H. Wu, X. Xu, C. Liu, On the General Ericksen-Leslie system: Parodi’s relation, well-posedness and stability. Arch. Ration. Mech. Anal. 208(1), 59–107 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  133. S. Xu, P. Sheng, C. Liu, An energetic variational approach for ION transport. Commun. Math. Sci. 12(4), 779–789 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  134. P. Yue, J.J. Feng, C. Liu, J. Shen, A diffuse-interface method for simulating two-phase flows of complex fluids. J. Fluid Mech. 515, 293–317 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  135. Q. Zheng, G.-W. Wei, Poisson-Boltzmann-Nernst-Planck model. J. Chem. Phys. 134(19), 194101 (2011)

    Google Scholar 

Download references

Acknowledgements

The work of Arkadz Kirshtein and Chun Liu is partially supported by NSF grants DMS-141200 and DMS-1216938. Authors want to thank Professor Yoshikazu Giga for reading the earlier draft of the manuscript, helpful discussions, and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arkadz Kirshtein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Giga, MH., Kirshtein, A., Liu, C. (2017). Variational Modeling and Complex Fluids. In: Giga, Y., Novotny, A. (eds) Handbook of Mathematical Analysis in Mechanics of Viscous Fluids. Springer, Cham. https://doi.org/10.1007/978-3-319-10151-4_2-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10151-4_2-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10151-4

  • Online ISBN: 978-3-319-10151-4

  • eBook Packages: Springer Reference MathematicsReference Module Computer Science and Engineering

Publish with us

Policies and ethics