Skip to main content

Models and Special Solutions of the Navier–Stokes Equations

  • Living reference work entry
  • First Online:
Handbook of Mathematical Analysis in Mechanics of Viscous Fluids

Abstract

Some aspects of the roles of exact solutions of the Navier–Stokes equations are considered with special emphasis on their well posedness. Many of them are classical examples, but they are looked at from a modern viewpoint of partial differential equations. Also considered are model equations describing motion of incompressible viscous fluid. Demonstrations are given for importance of both nonlinearity and nonlocality alike by mathematical analyses and numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. R.C. Ackerberg, The viscous incompressible flow inside a cone. J. Fluid Mech. 21, 47–81 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  2. J.D. Anderson Jr., A History of Aerodynamics (Cambridge University Press, New York, 1997)

    Book  Google Scholar 

  3. G.R. Baker, X. Li, A.C. Morlet, Analytic structure of two 1D-transport equations with nonlocal fluxes. Physica D 91, 349–375 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  4. W.H.H. Banks, P.G. Drazin, M.B. Zaturska, On perturbations of Jeffery–Hamel flow. J. Fluid Mech. 186, 559–581 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  5. G.K. Batchelor, Note on a class of solutions of the Navier–Stokes equations representing steady rotationally symmetric flow. Quart. J. Mech. Appl. Math. 4, 29–41 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  6. H. Bateman, Some recent researches on the motion of fluids. Month. Weather Rev. 43, 163–170 (1915)

    Article  Google Scholar 

  7. J.T. Beale, T. Kato, A. Majda, Remarks on the breakdown of smooth solutions for the 3-D Euler equations. Commun. Math. Phys. 94, 61–66 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  8. J. Bec, K. Khanin, Burgers turbulence. Phys. Rep. 447, 1–66 (2007)

    Article  MathSciNet  Google Scholar 

  9. R. Berker, Intégration des équations du mouvement d’un fluide visqueux incompressible. Handbuch der Physik, vol. VIII/2 (1963), pp. 1–384

    Google Scholar 

  10. A.S. Berman, Laminar flow in channels with porous walls. J. Appl. Phys. 24, 1232–1235 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  11. J.F. Brady, A. Acrivos, Steady flow in a channel or tube with an accelerating surface velocity. An exact solution to the Navier–Stokes equations with reverse flow. J. Fluid Mech. 112, 127–150 (1981)

    MathSciNet  MATH  Google Scholar 

  12. C. Budd, B. Dold, A. Stuart, Blow-up in a partial differential equation with conserved first integral. SIAM J. Appl. Math. 53, 718–742 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  13. C. Budd, B. Dold, A. Stuart, Blowup in a system of partial differential equations with conserved first integral. Part II: problems with convection. SIAM J. Appl. Math. 54, 610–640 (1994)

    MathSciNet  MATH  Google Scholar 

  14. J.M. Burgers, Mathematical examples illustrating relations occurring in the theory of turbulent fluid motion. Verhandelingen Der Koninklijke Nederlandsche Akademie van Wetenschappen, Afdeeling Natuurkunde, Eerste Sectie, Deel XVII, (1939) 1–53. Selected Papers of J.M. Burgers, ed. by F.T.M. Nieuwstadt, J.A. Steketee (Kluwer Academic Publishers, 1995), pp. 281–334

    Google Scholar 

  15. J.M. Burgers, A mathematical model illustrating the theory of turbulence. Adv. Appl. Mech. 1, 171–199 (1948)

    Article  MathSciNet  Google Scholar 

  16. A. Castro, D. Cordoba, Infinite energy solutions of the surface quasi-geostrophic equation. Adv. Math. 225, 1820–1829 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. D. Chae, On the Lagrangian dynamics for the 3D incompressible Euler equations. Commun. Math. Phys. 269, 557–569 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. D. Chae, Incompressible Euler equations: the blow-up problems and related results, in Handbook of Differential Equations, ed. by C.M. Dafermos, M. Pokorny (Elsevier, 2008), pp. 1–55

    Google Scholar 

  19. D. Chae, On the self-similar solutions of the 3D Euler and the related equations. Commun. Math. Phys. 305, 333–349 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. D. Chae, P. Constantin, J. Wu, Dissipative models generalizing the 2D Navier-Stokes and the surface quasi-geostrophic equations. Indiana Univ. Math. J. 61, 1997–2018 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. D. Chae, A. Córdoba, D. Córdoba, M.A. Fontelos, Finite time singularities in a 1D model of the quasi-geostrophic equation. Adv. Math. 194, 203–223 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. X. Chen, H. Okamoto, Global existence of solutions to the Proudman–Johnson equation. Proc. Jpn. Acad. 76, 149–152 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. X. Chen, H. Okamoto, Global existence of solutions to the generalized Proudman–Johnson equation. Proc. Jpn. Acad. 78, 136–139 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  24. S. Childress, G.R. Ierley, E.A. Spiegel, W.R. Young, Blow-up of unsteady two-dimensional Euler and Navier–Stokes solutions having stagnation-point form. J. Fluid Mech. 203, 1–22 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  25. C.-H. Cho, S. Hamada, H. Okamoto, On the finite difference approximation for a parabolic blow-up problem. Jpn. J. Indust. Appl. Math. 24, 131–160 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. C.-H. Cho, M. Wunsch, Global and singular solutions to the generalized Proudman-Johnson equation. J. Diff. Equ. 249, 392–413 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. K. Choi, A. Kiselev, Y. Yao, Finite time blow-up for a 1D model of 2D Boussinesq system. Commun. Math. Phys. 334, 1667–1679 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. A. Chorin, Vorticity and Turbulence (Springer, 1994)

    Book  MATH  Google Scholar 

  29. W.G. Cochran, The flow due to a rotating disc. Proc. Camb. Phil. Soc. 30, 365–375 (1934)

    Article  MATH  Google Scholar 

  30. P. Constantin, The Euler equations and nonlocal conservative Riccati equations. Int. Math. Res. Not. 2000, 455–465 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  31. P. Constantin, P.D. Lax, A. Majda, A simple one-dimensional model for the three-dimensional vorticity equation. Commun. Pure Appl. Math. 38, 715–724 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  32. P. Constantin, A.J. Majda, E.G. Tabak, Singular front formation in a model for quasigeostrophic flow. Phys. Fluid 6, 9–11 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  33. P. Constantin, Q. Nie, N. Schörghofer, Nonsingular surface quasi-geostrophic flow. Phys. Lett. A 241, 168–172 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  34. A. Cordoba, D. Cordoba, M.A. Fontelos, Formation of singularities for a transport equation with nonlocal velocity. Ann. Math. 162, 1377–1389 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  35. S.M. Cox, Two-dimensional flow of a viscous fluid in a channel with porous walls. J. Fluid Mech. 227, 1–33 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  36. A.D.D. Craik, Time-dependent solutions of the Navier–Stokes equations for spatially-uniform velocity gradients. Proc. R. Soc. Edinb. 124A, 127–136 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  37. A.D.D. Craik, H. Okamoto, A three-dimensional autonomous system with unbounded ‘bending’ solutions. Physica D 164, 168–186 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  38. O. Darrigol, Worlds of Flow (Oxfold University Press, 2005)

    Google Scholar 

  39. S. De Gregorio, On a one-dimensional model for the three-dimensional vorticity equation. J. Stat. Phys. 59, 1251–1263 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  40. S. De Gregorio, A partial differential equation arising in a 1D model for the 3D vorticity equation. Math. Methods Appl. Sci. 19, 1233–1255 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  41. J.M. Dorrepaal, An exact solution of the Navier–Stokes equation which describes non-orthogonal stagnation point flow in two dimensions. J. Fluid Mech. 163, 141–147 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  42. P.G. Drazin, N. Riley, The Navier-Stokes equations: a classification of flows and exact solutions (Cambridge University Press, 2006)

    Book  MATH  Google Scholar 

  43. W. E, B. Engquist, Blowup of solutions of the unsteady Prandtl’s equation. Commun. Pure Appl. Math. 50, 1287–1293 (1997)

    Google Scholar 

  44. J. Escher, J. Seiler, The periodic b-equation and Euler equations on the circle. J. Math. Phys. 51, 053101 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  45. J. Escher, Z. Yin, Well-posedness, blow-up phenomena, and global solutions for the b-equation. J. Reine Angewante Math. 624, 51–80 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  46. A.R. Forsyth, Theory of Differential Equations, vol. VI (Cambridge University Press, 1906). (The Burgers equation appears in Page 102, Ex. 3. This fact was brought to the author by Professor Tai-Ping Liu.)

    Google Scholar 

  47. L.E. Fraenkel, Laminar flow in symmetrical channels with slightly curved walls. I. On the Jeffery-Hamel solutions for flow between plane walls. Proc. R. Soc. Lond. 267, 119–138 (1962)

    MathSciNet  MATH  Google Scholar 

  48. U. Frisch, Turbulence (Cambridge University Press, 1995)

    Google Scholar 

  49. H. Fujita, T. Kato, On the Navier–Stokes initial-value problem I. Arch. Rat. Mech. Anal. 16, 269–315 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  50. W.I. Fushchich, W.M. Shtelen, N.I. Serov, Symmetry Analysis and Exact Solutions of Equations of Nonlinear Mathematical Physics (Springer, 1993)

    Book  MATH  Google Scholar 

  51. T. Gallay, C.E. Wayne, Global stability of vortex solutions of the two-dimensional Navier–Stokes equation. Commun. Math. Phys. 255, 97–129 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  52. W. Gerlach, L.v. Wolfersdorf, On the blowing-up of the diffusion equation of Satsuma and Mimura. Z. Angew. Math. Mech. 71, 123–126 (1991)

    Google Scholar 

  53. J.D. Gibbon, The three-dimensional Euler equations: where do we stand? Phisica D 237, 1894–1904 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  54. M.-H. Giga, Y. Giga Nonlinear Partial Differential Equations: Asymptotic Behavior of Solutions and Self-Similar Solutions (Kyoritsu Shuppan, 1999) (in Japanese). English translation M.-H. Giga, Y. Giga, J. Saal (Springer, 2010)

    Google Scholar 

  55. Y. Giga, T. Kambe, Large time behavior of the vorticity of two-dimensional viscous flow and its application to vortex formation. Commun. Math. Phys. 117, 549–568 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  56. R.E. Grundy, R. McLaughlin, Global blow-up of separable solutions of the vorticity equation. IMA J. Appl. Math. 59, 287–307 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  57. R.E. Grundy, R. McLaughlin, Three-dimensional blow-up solutions of the Navier–Stokes equations. IMA J. Appl. Math. 63, 287–306 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  58. S. Hamada, Numerical solutions of Serrin’s equations by double exponential transformation. Publ. Res. Inst. Math. Sci. 43, 795–817 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  59. S. Hamada, On the blow-up problem for the generalized Proudman–Johnson equation. Bull. Jpn. Soc. Indust. Appl. Math. 19, 1–23 (2009) (in Japanese)

    Google Scholar 

  60. G. Hamel, Spiralförmige Bewegungen zäher Flüssigkeiten. Jahresbericht Deutchen Math. Vereinigung 25, 34–60 (1917)

    MATH  Google Scholar 

  61. P. Hartman, Ordinary Differential Equations, 2nd edn. (Birkhäuser, 1982)

    Google Scholar 

  62. H. Helmholtz, Über Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen. J. Reine Angew. Math. 55, 25–55 (1858). English Transl. by P.G. Tait, Philos. Mag. Suppl. 33, 485–512 (1867)

    Google Scholar 

  63. K. Hiemenz, Die Grenzschicht an einem in den gleichförmigen Flüssigkeitsstrom eingetauchten geraden Kreiszylinder. Dinglers Polytech. J. 326, 321–324, 344–348, 357–362, 372–376, 391–393, 407–410 (1911)

    Google Scholar 

  64. F. Homann, Der Einflußgroßer Zähigkeit bei der Strömung um den Zylinder und un die Kugel. Z. Angew. Math. Mech. 16, 153–164 (1936)

    Article  MATH  Google Scholar 

  65. T.Y. Hou, C. Li, Dynamics stability of the three dimensional axisymmetric Navier–Stokes equations with swirl. Commun. Pure Appl. Math. 61, 661–697 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  66. J.K. Hunter, R. Saxton, Dynamics of director fields. SIAM J. Appl. Math. 51, 1498–1521 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  67. H. Ikeda, K. Kondo, H. Okamoto, S. Yotsutani, On the global branches of the solutions to a nonlocal boundary-value problem arising in Oseen’s spiral flows. Commun. Pure Appl. Anal. 2, 373–382 (2003)

    MathSciNet  MATH  Google Scholar 

  68. H. Ikeda, M. Mimura, H. Okamoto, A singular perturbation problem arising in Oseen’s spiral flows. Jpn. J. Indust. Appl. Math. 18, 393–403 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  69. G.B. Jeffery, The two-dimensional steady motion of a viscous fluid. Phil. Mag. S.6 29, 455–465 (1915)

    Google Scholar 

  70. Q. Jiu, C. Miao, J. Wu, Z. Zhang, The two-dimensional incompressible Boussinesq equations with general critical dissipation. SIAM J. Math. Anal. 46, 3426–3454 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  71. T. Kambe, A class of exact solutions of two-dimensional viscous flow. J. Phys. Soc. Jpn. 52, 834–841 (1983)

    Article  MathSciNet  Google Scholar 

  72. T. Kambe, A class of exact solutions of the Navier–Stokes equation. Fluid Dyn. Res. 1, 21–31 (1986)

    Article  Google Scholar 

  73. T. Kato, Quasi-linear equations of evolution, with applications to partial differential equations. Springer Lect. Notes Math. 448 25–70 (1975)

    Article  MathSciNet  Google Scholar 

  74. B. Khouider, A.J. Majda, S.N. Stechmann, Climate science in the tropics: waves, vortices ans PDEs. Nonlinearity 26, R1–R68 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  75. S.-C. Kim, H. Okamoto, Uniqueness of the exact solutions of the Navier–Stokes equations having null nonlinearity. Proc. R. Soc. Edinb. A 136, 1303–1315 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  76. S.-C. Kim, H. Okamoto, Vortices of large scale appearing in the 2D stationary Navier–Stokes equations at large Reynolds numbers. Jpn. J. Indust. Appl. Math. 27, 47–71 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  77. S.-C. Kim, H. Okamoto, The generalized Proudman–Johnson equation at large Reynolds numbers. IMA J. Appl. Math. 78, 379–403 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  78. S.-C. Kim, H. Okamoto, The generalized Proudman–Johnson equation and its singular perturbation problems. Jpn. J. Indust. Appl. Math. 31, 541–573 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  79. S.-C. Kim, H. Okamoto, Unimodal patterns appearing in the Kolmogorov flows at large Reynolds numbers. Nonlinearity 28, 3219–3242 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  80. R.H. Kraichnan, D. Montgomery, Two-dimensional turbulence, Rep. Prog. Phys. 43, 547–619 (1980)

    Article  MathSciNet  Google Scholar 

  81. H. Lamb, Hydrodynamics, 6th edn. (Cambridge University Press, 1945)

    Google Scholar 

  82. Z. Lei, T.Y. Hou, On the stabilizing effect of convection in three-dimensional incompressible flows. Commun. Pure Appl. Math. 61, 501–564 (2009)

    MathSciNet  MATH  Google Scholar 

  83. J. Leray, Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63, 193–248 (1934)

    Article  MathSciNet  Google Scholar 

  84. C.C. Lin, Note on a class of exact solutions in magneto-hydrodynamics. Arch. Rat. Mech. Anal. 1, 391–395 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  85. T.S. Lundgren, Strained spiral vortex model for turbulent fine structure. Phys. Fluid 25, 2193–2203 (1982)

    Article  MATH  Google Scholar 

  86. G. Luo, T.Y. Hou, Potentially singular solutions of the 3D axisymmetric Euler equations. Proc. Nat. Acad. Sci. 111, 12968–12973 (2014)

    Article  Google Scholar 

  87. Y. Maekawa, On the existence of Burgers vorticies for high Reynolds numbers. J. Math. Anal. Appl. 349, 181–200 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  88. Y. Maekawa, Existence of asymmetric Burgers vortices and their asymptotic behavior at large circulations. Math. Models Methods Appl. Sci. 19, 609–705 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  89. A.J. Majda, A.L. Bertozzi, Vorticity and Incompressible Flow (Cambridge University Press, 2002)

    MATH  Google Scholar 

  90. A. Majda, I. Timofeyev, Remarkable statistical behavior for truncated Burgers–Hopf dynamics Proc. Nat. Acad. Sci. 97, 12413–12417 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  91. A.J. Majda, X. Wang, Nonlinear Dynamics and Statistical Theories for Basic Geophysical Flows (Cambridge University Press, 2006)

    Book  MATH  Google Scholar 

  92. S.J.A. Malham, Collapse of a class of three-dimensional Euler vortices. Proc. R. Soc. A 456, 2823–2833 (2000). Correction: 457, 3052 (2001)

    Google Scholar 

  93. T. Matsumoto, T. Sakajo, One-dimensional hydrodynamic model generating a turbulent cascade. Phys. Rev. E 93, 053101 (2016)

    Article  Google Scholar 

  94. Y. Matsuno, Linearization of novel nonlinear diffusion equations with the Hilbert kernel and their exact solutions. J. Math. Phys. 32, 120–126 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  95. J.B. McLeod, Von Kármán’s swirling flow problem. Arch. Rat. Mech. Anal. 33, 91–102 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  96. J.B. McLeod, Laminar flow in a porous channel, in Asymptotics Beyond All Orders, ed. by H. Segur et al. (Plenum Press, 1991), pp. 255–266

    Chapter  Google Scholar 

  97. L.M. Milne–Thomson, Theoretical Hydrodynamics, 5th edn. (Macmillan, 1972)

    Google Scholar 

  98. T. Miyaji, H. Okamoto, A.D.D. Craik, Three-dimensional forced-damped dynamical systems with rich dynamics: bifurcations, chaos and unbounded solutions. Physica D. 311–312, 25–36 (2015)

    Article  MathSciNet  Google Scholar 

  99. H.K. Moffatt, The interaction of skewed vortex pairs: a model for blow-up of the Navier–Stokes equations. J. Fluid Mech. 409, 51–68 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  100. A.C. Morlet, Further properties of a continuum of model equations with globally defined flux. J. Math. Anal. Appl. 221, 132–160 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  101. J.D. Murray, On Burgers’ model equations for turbulence. J. Fluid Mech. 59, 263–279 (1973)

    Article  MATH  Google Scholar 

  102. M. Nagayama, H. Okamoto, On the interior layer appearing in the similarity solutions of the Navier–Stokes equations. Jpn. J. Indust. Appl. Math. 19, 277–300 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  103. M. Nagayama, H. Okamoto, J. Zhu, On the blow-up of some similarity solutions of the Navier–Stokes equations. Quader. di Mat. 10, 137–162 (2003)

    MathSciNet  MATH  Google Scholar 

  104. K.-I. Nakamura, H. Okamoto, H. Yagisita, Blow-up solutions appearing in the vorticity dynamics with linear strain. J. Math. Fluid Mech. 6, 157–168 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  105. J. Nečas, M. Růžička, V. Šverák, On Leray’s self-similar solutions of the Navier–Stokes equations. Acta Math. 176, 283–294 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  106. K. Ohkitani, A class of simple blow-up solutions with uniform vorticity to three dimensional Euler equations. J. Phys. Soc. Jpn. 59, 3811–3814 (1990); Addendum. ibid, 60, 1144 (1991)

    Google Scholar 

  107. K. Ohkitani, J.D. Gibbon, Numerical study of singularity formation in a class of Euler and Navier–Stokes flows. Phys. Fluid 12, 3181–3194 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  108. K. Ohkitani, H. Okamoto, Blow-up problems modeled from the strain-vorticity dynamics, in Proceedings of “Tosio Kato’s Method and Principle for Evolution Equations in Mathematical Physics”, vol. 1234 (RIMS Kokyuroku, 2001), pp. 240–250

    Google Scholar 

  109. K. Ohkitani, H. Okamoto, On the role of the convection term in the equations of motion of incompressible fluid. J. Phys. Soc. Jpn. 74, 2737–2742 (2005)

    Article  MATH  Google Scholar 

  110. K. Ohkitani, M. Yamada, Inviscid and inviscid-limit behavior of a surface quasigeostrophic flow. Phys. Fluids 9, 876–882 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  111. H. Okamoto, Axisymmetric stagnation flow converging obliquely on a cylinder. J. Phys. Soc. Jpn. 64, 2714–2717 (1995)

    Article  Google Scholar 

  112. H. Okamoto, Exact solutions of the Navier–Stokes equations via Leray’s method, Jpn. J. Indus. Appl. Math. 14, 169–197 (1997)

    Article  MATH  Google Scholar 

  113. H. Okamoto, Localization of singularities in inviscid limit—numerical examples, in Proceedings of Navier–Stokes Equations: Theory and Numerical Methods, ed. by R. Salvi. Pitman Research Notes in Mathematics Series, vol. 388 (Longman, Harlow, 1998), pp. 220–236

    Google Scholar 

  114. H. Okamoto, Well-posedness of the generalized Proudman–Johnson equation without viscosity. J. Math. Fluid Mech. 11, 46–59 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  115. H. Okamoto, Mathematics of the Navier–Stokes Equations (University of Tokyo Press, 2009) (in Japanese)

    Google Scholar 

  116. H. Okamoto, A nonlinear boundary-value problem with an integral constraint, in Proceedings of “Far-From-Equilibrium Dynamics”, RIMS Kokyuroku Bessatsu B31, (2012), 93–115

    Google Scholar 

  117. H. Okamoto, Blow-up problems in the strained vorticity dynamics and critical exponents. J. Math. Soc. Jpn. 65, 1079–1099 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  118. H. Okamoto, T. Sakajo, M. Wunsch, On a generalization of the Constantin–Lax–Majda equation. Nonlinearity 21, 2447–2461 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  119. H. Okamoto, T. Sakajo, M. Wunsch, Steady-states and traveling wave solutions of the generalized Constantin–Lax–Majda equation. Disc. Cont. Dyn. Syst. 34, 3155–3170 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  120. H. Okamoto, M. Shōji, Boundary layer in unsteady two-dimensional Navier-Stokes equations, in Recent Development in Domain Decomposition Methods and Flow Problems, ed. by H. Fujita et al. Gakuto International Series, Mathematical Sciences and Applications, vol. 11 (Gakkotosho, Tokyo, 1998), pp. 171–180

    Google Scholar 

  121. H. Okamoto, M. Shōji, The Mathematical Theory of Bifurcation of Permanent Progressive Water-Waves. (World Scientific, 2001)

    Google Scholar 

  122. H. Okamoto, J. Zhu, Some similarity solutions of the Navier–Stokes equations and related topics. Taiwan. J. Math. 4, 65–103 (2000)

    MathSciNet  MATH  Google Scholar 

  123. C.W. Oseen, Über Wirbelbewegung in einer reibenden Flüssigkeit. Arkiv Mate. Astro. Fysik 77 (1912) No. 14

    Google Scholar 

  124. C.W. Oseen, Exakte Lösungen der hydrodynamischen Differentialgleichungen. I. Arkiv Mate. Astro. Fysik 20(14), 1–14 (1927–1928); ibid. II., No. 22

    Google Scholar 

  125. I. Proudman, K. Johnson, Boundary-layer growth near a rear stagnation point. J. Fluid Mech. 12, 161–168 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  126. D. Riabouchinsky, Quelques considérations sur les mouvements plans rotationnels d’un liquide, Comp. Rendus Hebd. Acad. Sci. 179, 1133–1136 (1924)

    MATH  Google Scholar 

  127. A.C. Robinson, P.G. Saffman, Stability and structure of stretched vortices. Stud. Appl. Math. 70, 163–181 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  128. A. Rosenblatt, Solutions exactes des équations du mouvement des liquides visqueux (Gauthier-Villars, 1935)

    MATH  Google Scholar 

  129. L. Rosenhead, The steady two-dimensional radial flow of viscous fluid between two inclined plane walls. Proc. R. Soc. Lond. A 175, 436–467 (1940)

    Article  MATH  Google Scholar 

  130. L. Rosenhead (ed.), Laminar Boundary Layers: An Account of the Development, Structure, and Stability of Laminar Boundary Layers in Incompressible Fluids, Together with a Description of the Associated Experimental Techniques (Oxford University Press, 1963)

    Google Scholar 

  131. T. Sakajo, Blow-up solutions of Constantin–Lax–Majda equation with a generalized viscosity term. J. Math. Sci. Univ. Tokyo 10, 187–207 (2003)

    MathSciNet  MATH  Google Scholar 

  132. T. Sakajo, On global solutions of Constantin–Lax–Majda equation with a generalized viscosity term. Nonlinearity 16, 1319–1328 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  133. J. Satsuma, Exact solutions of a nonlinear diffusion equation. J. Phys. Soc. Jpn. 50, 1423–1424 (1981)

    Article  MathSciNet  Google Scholar 

  134. J. Satsuma, M. Mimura, Exact treatment of nonlinear diffusion equations with singular integral terms. J. Phys. Soc. Jpn. 54, 894–900 (1985)

    Article  MathSciNet  Google Scholar 

  135. H. Schlichting, K. Gersten, Boundary-Layer Theory. Transl. C. Mayes, 8th rev. (Springer, 2000)

    Google Scholar 

  136. S. Schochet, Explicit solutions of the viscous model vorticity equation. Commun. Pure Appl. Math. 39, 531–537 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  137. J. Serrin, On the mathematical basis for Prandtl’s boundary layer theory: an example. Arch. Rat. Mech. Anal. 28, 217–225 (1968)

    MathSciNet  MATH  Google Scholar 

  138. J. Serrin, The swirling vortex. Phil. Trans. R. Soc. A 271, 325–363 (1970)

    Article  MATH  Google Scholar 

  139. J. Shen, T. Tao, L.-L. Wang, Spectral Methods: Algorithms, Analysis and Applications (Springer, 2011)

    Book  Google Scholar 

  140. J.T. Stuart, The viscous flow near a stagnation point when the external flow has a uniform vorticity. J. Aerosp. Sci. 26, 124–125 (1959)

    Article  MATH  Google Scholar 

  141. K. Tamada, Two-dimensional stagnation point flow impinging obliquely on a plane wall. J. Phys. Soc. Jpn. 46, 310–311 (1979)

    Article  Google Scholar 

  142. C.L. Taylor, W.H.H. Banks, M.B. Zaturska, P.G. Drazin, Three dimensional flow in a porous channel. Quart. J. Mech. Appl. Math. 44, 105–133 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  143. M. Taylor, Partial Differential Equations III, 2nd edn. (Springer, 2011)

    Google Scholar 

  144. G.A. Tokaty, A History and Philosophy of Fluid Mechanics (G.T. Foulis & Co., Henley-on-Thames, 1971; Dover, 1994)

    Google Scholar 

  145. C.A. Truesdell, Rational Fluid Mechanics, 1687–1765, L. Euler’s Opera Omnia Ser. II, vol. 12 (O. Füssi, Lausanne, 1954), pp. 1–125

    Google Scholar 

  146. T.-P. Tsai, On Leray’s self-similar solutions of the Navier–Stokes equations satisfying local energy estimates. Arch. Rat. Mech. Anal. 143, 29–51 (1998)

    Article  MATH  Google Scholar 

  147. T. von Kármán, Über laminar und turbulente Reibung, Z. Angew. Math. Mech. 1, 233–252 (1921)

    Article  MATH  Google Scholar 

  148. T. von Kármán, The engineer grapples with nonlinear problems. Bull. Am. Math. Soc. 46, 615–683 (1940)

    Article  MATH  Google Scholar 

  149. T. von Kármán, Aerodynamics (Cornell University Press, 1954; Dover, 2004)

    Google Scholar 

  150. R. von Mises, K.O. Friedrichs, Fluid Dynamics (Springer, 1971)

    Book  MATH  Google Scholar 

  151. C.-Y. Wang, Axisymmetric stagnation flow on a cylinder. Quart. Appl. Math. 32, 207–213 (1974)

    Article  MATH  Google Scholar 

  152. C.Y. Wang, Exact solutions of the steady-state Navier–Stokes equations. Ann. Rev. Fluid Mech. 23, 159–177 (1991)

    Article  MathSciNet  Google Scholar 

  153. E.B.B. Watson, W.H.H. Banks, M.B. Zatsurska, P.G. Drazin, On transition to chaos, in two-dimensional channel flow symmetrically driven by accelerating walls J. Fluid Mech. 212, 451–485 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  154. E. Wegert, On the global solvability of the diffusion equation of Satsuma and Mimura. Z. Anal. Anwen. 9, 313–318 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  155. E. Wegert, A.S. Vasudeva Murthy, Blow-up in a modified Constantin–Lax–Majda model for the vorticity equation. Z. Anal. Anwen. 18, 183–191 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  156. H. Weyl, On the differential equations of the simplest boundary-layer problems. Ann. Math. 43, 381–407 (1942)

    Article  MathSciNet  MATH  Google Scholar 

  157. L. von Wolfersdorf, On the linearization of the Satsuma–Mimura diffusion equation. Math. Nach. 145, 243–254 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  158. E. Yumoto, On the existence of axi-symmetric exact solutions of the Navier–Stokes equations. Master’s thesis at RIMS, Kyoto University (2015)

    Google Scholar 

  159. P.J. Zandbergen, D. Dijkstra, Von Kármán swirling flows. Ann. Rev. Fluid Mech. 19, 465–491 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  160. J. Zhu, Numerical study of stagnation-point flows of incompressible fluid. Jpn. J. Indust. Appl. Math. 17, 209–228 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author is partially supported by JSPS KAKENHI 24244007. Part of the present chapter was written while the author was a visitor in 2014 to School of Mathematics, University of Minnesota. He would like to express his deepest gratitude for its generous support to him.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hisashi Okamoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this entry

Cite this entry

Okamoto, H. (2016). Models and Special Solutions of the Navier–Stokes Equations. In: Giga, Y., Novotny, A. (eds) Handbook of Mathematical Analysis in Mechanics of Viscous Fluids. Springer, Cham. https://doi.org/10.1007/978-3-319-10151-4_14-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10151-4_14-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-10151-4

  • eBook Packages: Springer Reference MathematicsReference Module Computer Science and Engineering

Publish with us

Policies and ethics