Skip to main content

Abstract

Bone loss continues to be a concern in spaceflight, with some crew members depicting local losses of up to 25% within a 6-month mission. Possible causes are direct or indirect effects by microgravity, radiation, dietary restriction, and atmospheric challenges. Despite their magnitude, bone losses have not yet led to increased fracture rates in astronauts returning from low-Earth orbit (LEO) missions. This could change for deep space missions, in particular to planets where falls and trauma will occur. Physical countermeasures, meant to provide musculoskeletal loading forces in the body’s lower half, are an important contribution to crew bone health. This requirement becomes an increasing imperative with prolonged missions. Forces and moments transmitted from exercise devices should therefore be considered at an early stage of the planning of space habitats. In addition, appropriate shielding against ionizing radiation, avoidance of exaggerated accumulation of CO2, and provision of a balanced diet will all contribute to bone health in astronaut crews.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ammann P, Bourrin S, Bonjour JP, Meyer JM, Rizzoli R (2000) Protein undernutrition-induced bone loss is associated with decreased IGF-I levels and estrogen deficiency. J Bone Miner Res 15:683–690

    Article  Google Scholar 

  • Arnett TR (2010) Acidosis, hypoxia and bone. Arch Biochem Biophys 503:103–109

    Article  Google Scholar 

  • Baxter NN, Habermann EB, Tepper JE, Durham SB, Virnig BA (2005) Risk of pelvic fractures in older women following pelvic irradiation. JAMA 294:2587–2593

    Article  Google Scholar 

  • Berrigan D, Lavigne JA, Perkins SN, Nagy TR, Barrett JC, Hursting SD (2005) Phenotypic effects of calorie restriction and insulin-like growth factor-1 treatment on body composition and bone mineral density of C57BL/6 mice: implications for cancer prevention. In Vivo 19:667–674

    Google Scholar 

  • Bonewald LF (2006) Mechanosensation and transduction in osteocytes. BoneKEy-Osteovision 3:7–15

    Article  Google Scholar 

  • Bonewald LF, Mundy GR (1990) Role of transforming growth factor-beta in bone remodeling. Clin Orthop Relat Res 250:261–276

    Google Scholar 

  • Caillot-Augusseau A, Lafage-Proust MH, Soler C, Pernod J, Dubois F, Alexandre C (1998) Bone formation and resorption biological markers in cosmonauts during and after a 180-day space flight (Euromir 95). Clin Chem 44:578

    Google Scholar 

  • Cavanagh PR, Genc KO, Gopalakrishnan R, Kuklis MM, Maender CC, Rice AJ (2010) Foot forces during typical days on the international space station. J Biomech 43:2182–2188

    Article  Google Scholar 

  • Cazzaniga A, Maier JAM, Castiglioni S (2016) Impact of simulated microgravity on human bone stem cells: new hints for space medicine. Biochem Biophys Res Commun 473:181–186

    Article  Google Scholar 

  • Clément G, Bukley A (2007) Artificial gravity. Springer, Berlin

    Book  Google Scholar 

  • De Witt JK, Ploutz-Snyder LL (2014) Ground reaction forces during treadmill running in microgravity. J Biomech 47:2339–2347

    Article  Google Scholar 

  • Felsenberg D, Armbrecht G (2012) Die Osteoradionekrose des Kieferknochens. Osteologie 3:180–185

    Google Scholar 

  • Frings-Meuthen P, Baecker N, Heer M (2008) Low-grade metabolic acidosis may be the cause of sodium chloride-induced exaggerated bone resorption. J Bone Miner Res 23:517–524

    Article  Google Scholar 

  • Frings-Meuthen P, Buehlmeier J, Baecker N, Stehle P, Fimmers R, May F, Kluge G, Heer M (2011) High sodium chloride intake exacerbates immobilization-induced bone resorption and protein losses. J Appl Physiol 111:537–542

    Article  Google Scholar 

  • Frost HM (1987) Bone “mass” and the “mechanostat”: a proposal. Anat Rec 219:1–9

    Article  Google Scholar 

  • Jones JA, Pietrzyk R, Whitson PA (2008) Renal and genitourinary concerns. In: Barratt MR, Pool SL (eds) Principles of clinical medicine for space flight. New York, Springer

    Google Scholar 

  • Kaplansky AS, Durnova GN, Ilyina-Kakueva EI, Sakharova ZF, Vorotnikova EV (1990) Histomorphometric analysis of bones of Cosmos-1887 rats. Physiologist 33:S20

    Google Scholar 

  • Kleinewietfeld M, Manzel A, Titze J, Kvakan H, Yosef N, Linker RA, Muller DN, Hafler DA (2013) Sodium chloride drives autoimmune disease by the induction of pathogenic TH17 cells. Nature 496:518–522

    Article  Google Scholar 

  • Kondo H, Searby ND, Mojarrab R, Phillips J, Alwood J, Yumoto K, Almeida EA, Limoli CL, Globus RK (2009) Total-body irradiation of postpubertal mice with (137)Cs acutely compromises the microarchitecture of cancellous bone and increases osteoclasts. Radiat Res 171:283–289

    Article  Google Scholar 

  • Kramer A, Gollhofer A, Armbrecht G, Felsenberg D, Gruber M (2017) How to prevent the detrimental effects of two months of bed-rest on muscle, bone and cardiovascular system: an RCT. Sci Rep 7:13177

    Article  Google Scholar 

  • Lang TF, Leblanc AD, Evans HJ, Lu Y (2006) Adaptation of the proximal femur to skeletal reloading after long-duration spaceflight. J Bone Miner Res 21:1224–1230

    Article  Google Scholar 

  • LeBlanc A, Schneider V, Shackelford L, West S, Oganov V, Bakulin A, Voronin L (2000) Bone mineral and lean tissue loss after long duration space flight. J Musculoskelet Neuronal Interact 1:157–160

    Google Scholar 

  • LeBlanc AD, Driscol TB, Shackelford LC, Evans HJ, Rianon NJ, Smith SM, Feeback DL, Lai D (2002) Alendronate as an effective countermeasure to disuse induced bone loss. J Musculoskelet Neuronal Interact 2:335–343

    Google Scholar 

  • Lee NK, Sowa H, Hinoi E, Ferron M, Ahn JD, Confavreux C, Dacquin R, Mee PJ, McKee MD, Jung DY, Zhang Z, Kim JK, Mauvais-Jarvis F, Ducy P, Karsenty G (2007) Endocrine regulation of energy metabolism by the skeleton. Cell 130:456–469

    Article  Google Scholar 

  • Marenzana M, Shipley AM, Squitiero P, Kunkel JG, Rubinacci A (2005) Bone as an ion exchange organ: evidence for instantaneous cell-dependent calcium efflux from bone not due to resorption. Bone 37:545

    Article  Google Scholar 

  • Mosley JR, Lanyon LE (1998) Strain rate as a controlling influence on adaptive modeling in response to dynamic loading of the ulna in growing male rats. Bone 23:313–318

    Article  Google Scholar 

  • Nikander R, Sievanen H, Heinonen A, Kannus P (2005) Femoral neck structure in adult female athletes subjected to different loading modalities. J Bone Miner Res 20:520–528

    Article  Google Scholar 

  • Pavy-Le Traon A, Heer M, Narici MV, Rittweger J, Vernikos J (2007) From space to Earth: advances in human physiology from 20 years of bed rest studies (1986–2006). Eur J Appl Physiol 101:143–194

    Article  Google Scholar 

  • Regan JN, Trivedi T, Guise TA, Waning DL (2017) The role of TGFbeta in bone-muscle crosstalk. Curr Osteoporos Rep 15:18–23

    Article  Google Scholar 

  • Rittweger J, Beller G, Felsenberg D (2000) Acute physiological effects of exhaustive whole-body vibration exercise in man. Clin Physiol 20:134

    Article  Google Scholar 

  • Rittweger J, Belavy D, Hunek P, Gast U, Boerst H, Feilcke B, Armbrecht G, Mulder E, Schubert H, Richardson C, de Haan A, Stegeman DF, Schiessl H, Felsenberg D (2006a) Highly demanding resistive exercise program is tolerated during 56 days of strict bed rest. Int J Sports Med 27:553–559

    Article  Google Scholar 

  • Rittweger J, Winwood K, Seynnes O, de Boer M, Wilks D, Lea R, Rennie M, Narici M (2006b) Bone loss from the human distal tibia epiphysis during 24 days of unilateral limb suspension. J Physiol 577:331–337

    Article  Google Scholar 

  • Rittweger J, Debevec T, Frings-Meuthen P, Lau P, Mittag U, Ganse B, Ferstl PG, Simpson EJ, Macdonald IA, Eiken O, Mekjavic IB (2016) On the combined effects of normobaric hypoxia and bed rest upon bone and mineral metabolism: results from the PlanHab study. Bone 91:130–138

    Article  Google Scholar 

  • Schneider V, Organov V, LeBlanc A, Rakhmanov A, Bakulin A, Grigoriev A, Varonin L (1992) Space flight bone loss and change in fat and lean body mass. J Bone Miner Res 117:S122

    Google Scholar 

  • Shane E, Silverberg SJ, Donovan D, Papadopoulos A, Staron RB, Addesso V, Jorgesen B, McGregor C, Schulman L (1996) Osteoporosis in lung transplantation candidates with end-stage pulmonary disease. Am J Med 101:262–269

    Article  Google Scholar 

  • Smith SM, Zwart SR, Heer M, Hudson EK, Shackelford L, Morgan JL (2014) Men and women in space: bone loss and kidney stone risk after long-duration spaceflight. J Bone Miner Res 29:1639–1645

    Article  Google Scholar 

  • Teitelbaum SL (2000) Bone resorption by osteoclasts. Science 289:1504–1508

    Article  Google Scholar 

  • Tomiyama H, Okazaki R, Inoue D, Ochiai H, Shiina K, Takata Y, Hashimoto H, Yamashina A (2008) Link between obstructive sleep apnea and increased bone resorption in men. Osteoporos Int 19:1185–1192

    Article  Google Scholar 

  • Vico L, Collet P, Guignandon A, Lafage-Proust MH, Thomas T, Rehaillia M, Alexandre C (2000) Effects of long-term microgravity exposure on cancellous and cortical weight-bearing bones of cosmonauts. Lancet 355:1607–1611

    Article  Google Scholar 

  • Vogel JM, Whittle MW (1976) Bone mineral changes: the second manned Skylab mission. Aviat Space Environ Med 47:396–400

    Google Scholar 

  • Watanabe Y, Ohshima H, Mizuno K, Sekiguchi C, Fukunaga M, Kohri K, Rittweger J, Felsenberg D, Matsumoto T, Nakamura T (2004) Intravenous pamidronate prevents femoral bone loss and renal stone formation during 90-day bed rest. J Bone Miner Res 19:1771–1778

    Article  Google Scholar 

  • Westing SH, Seger JY, Karlson E, Ekblom B (1988) Eccentric and concentric torque-velocity characteristics of the quadriceps femoris in man. Eur J Appl Physiol Occup Physiol 58:100–104

    Article  Google Scholar 

  • Willey JS, Lloyd SA, Robbins ME, Bourland JD, Smith-Sielicki H, Bowman LC, Norrdin RW, Bateman TA (2008) Early increase in osteoclast number in mice after whole-body irradiation with 2 Gy X rays. Radiat Res 170:388–392

    Article  Google Scholar 

  • Yang PF, Bruggemann GP, Rittweger J (2011) What do we currently know from in vivo bone strain measurements in humans? J Musculoskelet Neuronal Interact 11:8–20

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörn Rittweger .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Rittweger, J. (2019). Maintaining Crew Bone Health. In: Seedhouse, E., Shayler, D. (eds) Handbook of Life Support Systems for Spacecraft and Extraterrestrial Habitats. Springer, Cham. https://doi.org/10.1007/978-3-319-09575-2_27-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09575-2_27-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09575-2

  • Online ISBN: 978-3-319-09575-2

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics