Skip to main content

Tracking Techniques in Augmented Reality for Handheld Interfaces

  • Living reference work entry
  • First Online:
Encyclopedia of Computer Graphics and Games

Synonyms

Augmented reality; Mobile interface; Motion tracking

Definitions

Tracking is a process to measure the camera’s pose that needs to be aligned to the targeted pose estimation on real world. In handheld mobile AR, tracking technique has been facing its evolution from black and square markers detection, to feature tracking, and the topical is a motion tracking technique. Therefore, a comprehensive review in AR tracking techniques is provided particularly in handheld mobile AR including the recent motion tracking technique in sight.

Introduction

As agreed with Azuma (1997), the definition of augmented reality (AR) is consists of three main portions: (1) the fusion between real and virtual images, (2) running in real time, and (3) registered in three perspective world 3D (Azuma 1997; Krevelen and Poelman 2010; Mekni and Lemieux 2014). Recently, AR has been moving forward from desktop application to handheld mobile application. Handheld mobile AR interface seems to be the main...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Azuma, R.: A survey of augmented reality. Presence Teleop. Virt. 6(4), 355–385 (1997)

    Article  Google Scholar 

  • Azuma, R., Baillot, Y., Behringer, R., Feiner, S., Julier, S., MacIntyre, B.: Recent advances in augmented reality. IEEE Comput. Graph. Appl. 21(6), 35–47 (2001)

    Article  Google Scholar 

  • Bastos, R., Dias, J.M.S.: Fully automated texture tracking based on natural features ex-traction and template matching. In: Proceedings of the 2005 ACM SIGCHI International Conference on Advances in Computer Entertainment Technology, pp. 180–183. ACM, Spain (2005)

    Chapter  Google Scholar 

  • Ben-Ari, M.: Principles of Concurrent and Distributed Programming. Prentice Hall, UK (1990)

    Google Scholar 

  • Bimber, O., Raskar, R., Inami, M.: Spatial Augmented Reality. AK Peters, Wellesley (2005)

    Book  Google Scholar 

  • Chen, L., et al.: Research on the augmented reality system without identification markers for home exhibition. In: 2016 11th International Conference on Computer Science & Education (ICCSE), pp. 524–528. IEEE, Japan (2016)

    Chapter  Google Scholar 

  • Chew, S.S., Ghazilla, R.A.R., Yap, H.J., Pai, Y.S.: Framework of augmented reality approach towards ergonomic assessment of driver vehicle package design. Jurnal Teknologi. 77(27), 113–118 (2015)

    Google Scholar 

  • Comport, A.I., Marchand, E., Chaumette, F.: A real-time tracker for markerless augmented reality. In: Proceedings of 2nd IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 36–45, Japan (2003)

    Google Scholar 

  • Coordinate Systems. ARToolKit Documentation. https://archive.artoolkit.org/documentation. Last accessed 28 Sept 2017

  • De Sá, M., Churchill, E.: Mobile augmented reality: exploring design and prototyping techniques. In: Proceedings of the International Conference on Human-Computer Interaction with Mobile Devices and Services Companion (MobileHCI), pp. 221–230. ACM, USA (2012)

    Google Scholar 

  • Fang, W., Zheng, L., Deng, H., Zhang, H.: Real-time motion tracking for mobile augmented/virtual reality using adaptive visual-inertial fusion. Sensors. 17(5), 1037 (2017)

    Article  Google Scholar 

  • Fiala, M.: ARTag, a fiducial marker system using digital techniques. In: CVPR ‘05 Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR ‘05) – volume 2, pp. 590–596. IEEE, USA (2005)

    Google Scholar 

  • Filippeschi, A., Schmitz, N., Miezal, M., Bleser, G., Ruffaldi, E., Stricker, D.: Survey of motion tracking methods based on inertial sensors: a focus on upper limb human motion. Sensors. 17(6), 1657 (2017)

    Article  Google Scholar 

  • Grubert, J., Itoh, Y., Moser, K., Swan II, J.E.: A survey of calibration methods for optical see-through head-mounted displays. IEEE Trans. Vis. Comput. Graph. 13(9) (2017). https://doi.org/10.1109/TVCG.2017.2754257

    Article  Google Scholar 

  • Hager, G.D., Belhumeur, P.N.: Efficient region tracking with parametric models of geometry and illumination. IEEE Trans. Pattern Anal. Mach. Intell. 20(10), 1025–1039 (1998)

    Article  Google Scholar 

  • Höllerer, T.H., Feiner, S.K.: eds. Mobile Augmented Reality. Telegeoinformatics: Location-Based Computing and Services. Taylor & Francis Books, London (2004)

    Google Scholar 

  • Introducing ARKit. https://developer.apple.com/arkit. Last accessed 29 Sept 2017

  • Isard, M., Blake, A.: Contour tracking by stochastic propagation of conditional density. In: European Conference on Computer Vision, pp. 343–356. Springer, UK (1996)

    Google Scholar 

  • Kar, W.C., Cheok, A.D., Prince, S.J.D.: Online 6 DOF augmented reality registration from natural features. In: Proceedings of International Symposium on Mixed and Augmented Reality, p. 305. IEEE, USA (2002)

    Google Scholar 

  • Kato, H., Billinghurst, M.: Marker tracking and HMD calibration for a video-based augmented reality conferencing system. In: IEEE and ACM International Workshop on Augmented Reality (IWAR), pp. 85–94 (1999)

    Chapter  Google Scholar 

  • Kawai, N., Sato, T., Nakashima, Y., Yokoya, N.: Augmented reality marker hiding with texture deformation. IEEE Trans. Vis. Comput. Graph. 23(10), 2288–2300 (2017)

    Article  Google Scholar 

  • Kejariwal, A., Orsini, F.: On the definition of real-time: applications and systems. In: Proceedings of 2016 IEEE Trustcom/BigDataSE/ISPA, pp. 2213–2220. IEEE, China (2016)

    Chapter  Google Scholar 

  • Khandelwala, P., Swarnalatha, P.B., Bishta, N., Prabub, S.: Detection of features to track objects and segmentation using GrabCut for application in marker-less augmented reality. In: Proceedings of 2nd International Symposium on Computer Vision and the Internet (VisionNet ‘15), pp. 698–705. Elsevier (2015)

    Google Scholar 

  • Kissling, E., et al.: Efficient rasterization for edge-based 3d object tracking on mobile devices. In: SIGGRAPH Asia 2012 Technical Briefs, article no.12. ACM, Singapore (2012)

    Google Scholar 

  • Krevelen, V.D., Poelman, R.: A survey of augmented reality technologies, applications and limitations. Int. J. Virtual Real. 9(2), 1–20 (2010)

    Google Scholar 

  • Kurkovsky, S., Koshy, R., Novak, V., Szul, P.: Current issues in handheld augmented reality. In: Proceeding of the International Conference on Communications and Information Technology (ICCIT), pp. 68–72. IEEE, Tunisia (2012)

    Google Scholar 

  • Lima, J.P., Simões, F., Figueiredo, L., Kelner, J.: Model based markerless 3D tracking applied to augmented reality. SBC J. 3D Interact. Syst. 1, 2–15 (2010)

    Google Scholar 

  • Marder-Eppstein, E.: Project Tango. In: Proceedings on ACM SIGGRAPH 2016 Real-Time Live!, article no. 40. ACM, Califonia (2016)

    Google Scholar 

  • Mekni, M., Lemieux, A.: Augmented reality: application, challenges and future trend. In: Proceedings of the 13th International Conference on Applied Computer and Applied Computational Science (ACACOS ‘14), pp. 205–214, Malaysia (2014)

    Google Scholar 

  • Möhring, M., Lessig, C., Bimber, O.: Video see-through AR on consumer cell-phones. In: ISMAR ‘04: Proceedings of the 3rd Int’l Symposium on Mixed and Augmented Reality, pp. 252–253. IEEE CS Press, USA (2004)

    Chapter  Google Scholar 

  • Neumann, U., You, S.: Natural feature tracking for augmented reality. IEEE Trans. Multimedia. 1(1), 53–64 (1999)

    Article  Google Scholar 

  • Noh, Z., Sunar, M.S., Pan, Z.: A review on augmented reality for virtual heritage system. In: International Conference on Technologies for E-Learning and Digital Entertainment, pp. 50–61. Springer (2009)

    Google Scholar 

  • Overview ARCore. https://developers.google.com/ar/discover. Last accessed 29 Sept 2017

  • Pang, Y., et al.: A markerless registration method for augmented reality based on affine properties. In: Proceedings of the 7th Australasian User interface conference – volume 50, pp. 25–32. Australian Computer Society, Australia (2006)

    Google Scholar 

  • Pivec, M., Kronberger, A.: Virtual museum: playful visitor experience in the real and virtual world. In: 2016 8th International Conference on Games and Virtual Worlds for Serious Applications (VS-GAMES), pp. 1–4. IEEE, Spain (2016)

    Google Scholar 

  • Ponce, B.A., et al.: Telemedicine with mobile devices and augmented reality for early post-operative care. In: Proceedings of 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 1411–4414. IEEE, USA (2016)

    Google Scholar 

  • Pressigout, M., Marchand, E.: Real-time 3D model-based tracking: combining edge and texture information. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA ‘06), pp. 2726–2731. IEEE, USA (2006)

    Google Scholar 

  • Reitmayr, G., Drummond, T.W.: Going out: robust model-based tracking for outdoor augmented reality. In: IEEE/ACM International Symposium on Mixed and Augmented Reality, pp. 109–118. ACM, USA (2006)

    Chapter  Google Scholar 

  • Roberto, R., Lima, J.P., Araújo, T.: Evaluation of motion tracking and depth sensing accuracy of the Tango tablet. In: Proceedings of IEEE International Symposium on Mixed and Augmented Reality, pp. 211–234. IEEE, Mexico (2016)

    Google Scholar 

  • Ruan, K., Jeong, H.: An augmented reality system using QR code as marker in android smartphone. In: Proceedings of Engineering and Technology (S-CET). IEEE Computer Society, China (2012)

    Google Scholar 

  • Santana, J.M., et al.: Multimodal location based services – semantic 3D city data as virtual and augmented reality. In: Progress in Location-Based Services, pp. 329–353. Springer (2016)

    Google Scholar 

  • Schmalstieg, D., Wagner, D.: Experiences with handheld augmented reality. In: Proceeding of the International Conference on Mixed and Augmented Reality (ISMAR), pp. 3–18. IEEE & ACM, Japan (2007)

    Google Scholar 

  • Shi, J., Tomasi, C.: Good features to track, in Computer Vision and Pattern Recognition. In: Proceedings CVPR ‘94 of IEEE Computer Society Conference. IEEE, USA (1994)

    Google Scholar 

  • Shin, K.G., Ramanathan, P.: Real-time computing: a new discipline of computer science and engineering. In: Proceedings of the IEEE, pp. 6–24. IEEE (1994)

    Article  Google Scholar 

  • Siltanen, S.: Theory and Applications of Marker-Based Augmented Reality. VTT, Finland (2012)

    Google Scholar 

  • Siltanen, S., Aikala, M.: Augmented reality enriches hybrid media. In: Proceeding of the 16th International Academic MindTrek Conference, pp. 113–116. ACM, Finland (2012)

    Chapter  Google Scholar 

  • Souza, A., Macedo, M.C., Apolinário, A.L.: Multi-frame adaptive non-rigid registration for markerless augmented reality. In: Proceedings of the 13th ACM SIGGRAPH International Conference on Virtual-Reality Continuum and its Applications in Industry, pp. 7–16. ACM, China (2014)

    Google Scholar 

  • Thomas, D.J.: Augmented reality in surgery: the computer-aided medicine revolution. Int. J. Surg. 36, 25 (2016)

    Article  Google Scholar 

  • Trevisan, D.G., Nedel, L.P., Macq, B.: Augmented vision for medical applications. In: Proceedings of the 2008 ACM Symposium on Applied Computing, pp. 1415–1419. ACM, Brazil (2008)

    Chapter  Google Scholar 

  • Vincent, T., Nigay, L., Kurata, T.: Handheld augmented reality: effect of registration jitter on cursor-based pointing techniques. In: Proceedings of the 25th Conference on Interaction Homme-Machine (IHM), pp. 1–6. ACM, France (2013)

    Google Scholar 

  • Wagner, D., Pintaric, T., Ledermann, F., Schmalstieg, D.: Towards massively multi-user augmented reality on handheld devices. In: International Conference on Pervasive Computing, pp. 208–219. ACM, Germany (2005)

    Chapter  Google Scholar 

  • Yuan, M.L., Ong, S.K., Nee, A.Y.C.: Registration based on projective reconstruction technique for augmented reality systems. IEEE Trans. Vis. Comput. Graph. 11(3), 254–264 (2005)

    Article  Google Scholar 

  • Zhang, X., Fronz, S., Navab, N.: Visual marker detection and decoding in AR systems: a comparative study. In: ISMAR ‘02, pp. 97–106. IEEE, Germany (2002)

    Google Scholar 

  • Zhou, F., Duh, H., Billinghurst, M.: Trends in augmented reality tracking, interaction and display: a review of ten years of ISMAR. In: Proceedings of the 7th IEEE/ACM International Symposium on Mixed and Augmented Reality, pp. 193–202. IEEE Computer Society, UK (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eg Su Goh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Goh, E.S., Sunar, M.S., Ismail, A.W. (2019). Tracking Techniques in Augmented Reality for Handheld Interfaces. In: Lee, N. (eds) Encyclopedia of Computer Graphics and Games. Springer, Cham. https://doi.org/10.1007/978-3-319-08234-9_364-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08234-9_364-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08234-9

  • Online ISBN: 978-3-319-08234-9

  • eBook Packages: Springer Reference Computer SciencesReference Module Computer Science and Engineering

Publish with us

Policies and ethics