Encyclopedia of Computer Graphics and Games

Living Edition
| Editors: Newton Lee

Perceptual Illusions and Distortions in Virtual Reality

  • Niels Christian Nilsson
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-08234-9_245-1

Synonyms

Definitions

Virtual Reality (VR) enables users to act and perceive as they do during everyday interactions with the word. As a consequence, VR may deliberately or inadvertently elicit a range of perceptual illusions and distortions on behalf of immersed users.

Introduction

From an early age, people become experts at deciphering the continuous stream of stimuli registered by various sensory systems in response to the perceiver’s own actions and events in the environment. However, even though the senses provide reasonably reliable information, perception is imperfect, leaving the perceiver vulnerable to illusions, i.e., instances of erroneous or misinterpreted perceptions of sensory information (Stevenson 2010).

A defining feature of Virtual Reality (VR) systems is that they support natural perception and actions by means of high fidelity tracking and displays. That is, VR systems...

This is a preview of subscription content, log in to check access.

References

  1. Banakou, D., Groten, R., Slater, M.: Illusory ownership of a virtual child body causes overestimation of object sizes and implicit attitude changes. Proc. Natl. Acad. Sci. 110(31), 12846–12851 (2013)CrossRefGoogle Scholar
  2. Banton, T., Stefanucci, J., Durgin, F., Fass, A., Proffitt, D.: The perception of walking speed in a virtual environment. Presence Teleop. Virt. Environ. 14(4), 394–406 (2005)CrossRefGoogle Scholar
  3. Botvinick, M., Cohen, J.: Rubber hands’ feel’touch that eyes see. Nature. 391(6669), 756–756 (1998)CrossRefGoogle Scholar
  4. Bowman, D.A., McMahan, R.P.: Virtual reality: how much immersion is enough? Computer. 40(7), 36–43 (2007)CrossRefGoogle Scholar
  5. Brandt, T., Dichgans, J., Koenig, E.: Differential effects of central versus peripheral vision on egocentric and exocentric motion perception. Exp. Brain Res. 16(5), 476–491 (1973)CrossRefGoogle Scholar
  6. Davis, S., Nesbitt, K., Nalivaiko, E.: A systematic review of cybersickness. In: Proceedings of the 2014 Conference on Interactive Entertainment, pp. 1–9. ACM (2014)Google Scholar
  7. Durgin, F.H., Reed, C., Tigue, C.: Step frequency and perceived self-motion. ACM Trans. Appl. Percept. (TAP). 4(1), 5 (2007)CrossRefGoogle Scholar
  8. Kassler, L., Feasel, J., Lewek, M.D., Brooks Jr., F.P., Whitton, M.C.: Matching actual treadmill walking speed and visually perceived walking speed in a projection virtual environment. In: Proceedings of the 7th Symposium on Applied Perception in Graphics and Visualization, pp. 161–161. ACM (2010)Google Scholar
  9. Lombard, M., Ditton, T.: At the heart of it all: the concept of presence. J. Comput.-Mediat. Commun. 3(2), 0–0 (1997)CrossRefGoogle Scholar
  10. Lowther, K., Ware, C.: Vection with large screen 3d imagery. In: Conference Companion on Human Factors in Computing Systems, pp. 233–234. ACM (1996)Google Scholar
  11. Lugrin, J.-L., Latt, J., Latoschik, M.E.: Avatar anthropomorphism and illusion of body ownership in vr. In: 2015 I.E. Virtual Reality (VR), pp. 229–230. IEEE (2015)Google Scholar
  12. Maister, L., Sebanz, N., Knoblich, G., Tsakiris, M.: Experiencing ownership over a dark-skinned body reduces implicit racial bias. Cognition. 128(2), 170–178 (2013)CrossRefGoogle Scholar
  13. Maselli, A., Slater, M.: The building blocks of the full body ownership illusion. Front. Hum. Neurosci. 7, 83 (2013)CrossRefGoogle Scholar
  14. Nilsson, N., Serafin, S., Nordahl, R.: Establishing the range of perceptually natural visual walking speeds for virtual walking-in-place locomotion. In: Proceedings of the 2014 I.E. Virtual Reality Conference. IEEE (2014a)Google Scholar
  15. Nilsson, N.C., Serafin, S., Nordahl, R.: The influence of step frequency on the range of perceptually natural visual walking speeds during walking-in-place and treadmill locomotion. In: Proceedings of the 20th ACM Symposium on Virtual Reality Software and Technology, pp. 187–190. ACM (2014b)Google Scholar
  16. Nilsson, N.C., Serafin, S., Nordahl, R.: The effect of visual display properties and gain presentation mode on the perceived naturalness of virtual walking speeds. In: 2015 I.E. Virtual Reality (VR), pp. 81–88. IEEE (2015a)Google Scholar
  17. Nilsson, N.C., Serafin, S., Nordahl, R.: The effect of head mounted display weight and locomotion method on the perceived naturalness of virtual walking speeds. In: 2015 I.E. Virtual Reality Conference (VR) (2015b)Google Scholar
  18. Nilsson, N.C., Serafin, S., Nordahl, R.: The perceived naturalness of virtual walking speeds during wip locomotion: summary and meta-analyses. PsychNol. J. 14(1), 7–39 (2016)Google Scholar
  19. Nordahl, R., Nilsson, N.C., Turchet, L., Serafin, S.: Vertical illusory self-motion through haptic stimulation of the feet. In: Proceedings of the 2012 I.E. VR Workshop on Perceptual Illusions in Virtual Environments (2012)Google Scholar
  20. Normand, J.-M., Giannopoulos, E., Spanlang, B., Slater, M.: Multisensory stimulation can induce an illusion of larger belly size in immersive virtual reality. PLoS One. 6(1), e16128 (2011)CrossRefGoogle Scholar
  21. Palmisano, S., Chan, A.: Jitter and size effects on vection are immune to experimental instructions and demands. Percept.-Lond. 33, 987–1000 (2004)CrossRefGoogle Scholar
  22. Peck, T.C., Seinfeld, S., Aglioti, S.M., Slater, M.: Putting yourself in the skin of a black avatar reduces implicit racial bias. Conscious. Cogn. 22(3), 779–787 (2013)CrossRefGoogle Scholar
  23. Powell, W., Stevens, S., abd Hand, B., Simmonds, M.: Blurring the boundaries: the perception of visual gain in treadmill-mediated virtual environments. In: Proceedings of the 3rd IEEE VR Workshop on Perceptual Illusions in Virtual Environments, pp. 4–8. IEEE (2011)Google Scholar
  24. Renner, R.S., Velichkovsky, B.M., Helmert, J.R.: The perception of egocentric distances in virtual environments-a review. ACM Comput. Surv. 46(2), 23 (2013)CrossRefGoogle Scholar
  25. Riecke, B.E., Schulte-Pelkum, J.: Perceptual and cognitive factors for self-motion simulation in virtual environments: how can self-motion illusions (“vection”) be utilized? In: Human Walking in Virtual Environments, pp. 27–54. Springer (2013)Google Scholar
  26. Riecke, B., Schulte-Pelkum, J., Avraamides, M., von der Heyde, M., Bülthoff, H.: Scene consistency and spatial presence increase the sensation of self-motion in virtual reality. In: Proceedings of the 2nd Symposium on Applied Perception in Graphics and Visualization, pp. 111–118. ACM (2005a)Google Scholar
  27. Riecke, B., Västfjäll, D., Larsson, P., Schulte-Pelkum, J.: Top-down and multi-modal influences on self-motion perception in virtual reality. In: Proceedings of the 11th International Conference on Human-Computer Interaction (2005b)Google Scholar
  28. Riecke, B., Feuereissen, D., Rieser, J.: Auditory self-motion illusions (circular vection) can be facilitated by vibrations and the potential for actual motion. In: Proceedings of the 5th Symposium on Applied Perception in Graphics and Visualization, pp. 147–154. ACM (2008)Google Scholar
  29. Riva, G., Waterworth, J.A., Waterworth, E.L., Mantovani, F.: From intention to action: the role of presence. New Ideas Psychol. 29(1), 24–37 (2011)CrossRefGoogle Scholar
  30. Rovira, A., Swapp, D., Spanlang, B., Slater, M.: The use of virtual reality in the study of people’s responses to violent incidents. Front. Behav. Neurosci. 3, 59 (2009)Google Scholar
  31. Sanchez-Vives, M.V., Slater, M.: From presence to consciousness through virtual reality. Nat. Rev. Neurosci. 6(4), 332–339 (2005)CrossRefGoogle Scholar
  32. Serafin, S., Nilsson, N.C., Erkut, C., Nordahl, R.: Virtual Reality and the Senses. Danish Sound Innovation Network (2017). https://issuu.com/danishsound/docs/dtu_whitepaper_2017_singlepages. ISBN 978-87-643-1317-8
  33. Skarbez, R., Brooks Jr, F.P., Whitton, M.C.: A survey of presence and related concepts. ACM Comput. Surv. 50(6), 96 (2017)CrossRefGoogle Scholar
  34. Slater, M.: Place illusion and plausibility can lead to realistic behaviour in immersive virtual environments. Philos. Trans. R. Soc. B. 364(1535), 3549–3557 (2009)CrossRefGoogle Scholar
  35. Slater, M., Perez-Marcos, D., Ehrsson, H.H., Sanchez-Vives, M.V.: Towards a digital body: the virtual arm illusion. Front. Hum. Neurosci. 2, 6 (2008)CrossRefGoogle Scholar
  36. Slater, M., Spanlang, B., Corominas, D.: Simulating virtual environments within virtual environments as the basis for a psychophysics of presence. ACM Trans. Graph. 29(4), 92 (2010a)CrossRefGoogle Scholar
  37. Slater, M., Spanlang, B., Sanchez-Vives, M.V., Blanke, O.: First person experience of body transfer in virtual reality. PLoS One. 5(5), e10564 (2010b)CrossRefGoogle Scholar
  38. Steinicke, F., Bruder, G., Jerald, J., Frenz, H., Lappe, M.: Estimation of detection thresholds for redirected walking techniques. IEEE Trans. Vis. Comput. Graph. 16(1), 17–27 (2010)CrossRefGoogle Scholar
  39. Steptoe, W., Steed, A., Slater, M.: Human tails: ownership and control of extended humanoid avatars. IEEE Trans. Vis. Comput. Graph. 19(4), 583–590 (2013)CrossRefGoogle Scholar
  40. Stevenson, A.: Oxford Dictionary of English. Oxford University Press, Oxford (2010)Google Scholar
  41. Suma, E., Clark, S., Krum, D., Finkelstein, S., Bolas, M., and Warte, Z.: Leveraging change blindness for redirection in virtual environments. In: Proceedings of the 2011 I.E. Virtual Reality Conference, pp. 159–166. IEEE (2011)Google Scholar
  42. Väljamäe, A.: Auditorily-induced illusory self-motion: a review. Brain Res. Rev. 61(2), 240–255 (2009)CrossRefGoogle Scholar
  43. Waterworth, E.L., Waterworth, J.A.: Focus, locus, and sensus: the three dimensions of virtual experience. Cyberpsychol. Behav. 4(2), 203–213 (2001)CrossRefGoogle Scholar
  44. Wright, W., DiZio, P., Lackner, J.: Perceived self-motion in two visual contexts: dissociable mechanisms underlie perception. J. Vestib. Res. 16(1), 23–28 (2006)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Aalborg University CopenhagenKøbenhavnDenmark