Encyclopedia of Computer Graphics and Games

Living Edition
| Editors: Newton Lee

Locomotion in Virtual Reality Video Games

  • Evren Bozgeyikli
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-08234-9_186-1

Synonyms

Definitions

Locomotion in a virtual reality video game is the travel in virtual world in order to move to a desired location.

Introduction

Most of the virtual reality (VR) systems, including virtual reality video games, often require harmoniously designed components such as audio and visual elements, task design, virtual worlds, as well as interaction and locomotion techniques. Locomotion is among the most important and very commonly used tasks in 3D virtual reality games (Bowman et al. 2004). Small position and rotation changes of the virtual viewpoint can be performed by head movements in immersive virtual reality systems that have head tracking capabilities. Such systems often use head-mounted displays to present the virtual world to the player. However, if the game requires a larger amount of travel than the real-world area, then a different locomotion technique needs to be used.

Recently in the late...

This is a preview of subscription content, log in to check access.

References

  1. Barrera, S., Takahashi, H., Nakajima, M.: Hands-free navigation methods for moving through a virtual landscape walking interface virtual reality input devices. In: Proceedings of Computer Graphics International, pp. 388–394. (2004)Google Scholar
  2. Bowman, D.A., Kruijff, E., LaViola, J.J., Poupyrev, I.: 3D User Interfaces: Theory and Practice. Addison-Wesley, Boston (2004)Google Scholar
  3. Bozgeyikli, E., Raij, A., Katkoori, S., Dubey, R.: Locomotion in virtual reality for individuals with autism spectrum disorder. In: Proceedings of the 2016 Symposium on Spatial User Interaction, pp. 33–42. ACM (2016)Google Scholar
  4. Brooks Jr, F.P.: Walkthrough – a dynamic graphics system for simulating virtual buildings. In: Proceedings of the 1986 Workshop on Interactive 3D Graphics, pp. 9–21. ACM (1987)Google Scholar
  5. Bruder, G., Steinicke, F., Hinrichs, K.H.: Arch-explore: a natural user interface for immersive architectural walkthroughs. In: IEEE Symposium on 3D User Interfaces 3DUI 2009, pp. 75–82. (2009)Google Scholar
  6. Cirio, G., Marchal, M., Regia-Corte, T., Lecuyer, A.: The magic barrier tape: a novel metaphor for infinite navigation in virtual worlds with a restricted walking workspace. In: Proceedings of the 16th ACM Symposium on Virtual Reality Software and Technology, pp. 155–162. ACM (2009)Google Scholar
  7. Darken, R.P., Sibert, J.L.: Navigating large virtual spaces. Int. J. Hum. Comput. Interact. 8, 49–71 (1996)CrossRefGoogle Scholar
  8. Darken, R.P., Cockayne, W.R., Carmein D.: The omni-directional treadmill: a locomotion device for virtual worlds. In: Proceedings of the 10th Annual ACM Symposium on User Interface Software and Technology, pp. 213–221. ACM (1997)Google Scholar
  9. De Luca, A., et al.: Motion control of the CyberCarpet Platform. IEEE Trans. Control Syst. Technol. 21, 410–427 (2013)CrossRefGoogle Scholar
  10. Feasel, J., Whitton, M.C., Wendt, J.D.: LLCM-WIP: low-latency, continuous-motion walking-in-place. In: IEEE Symposium on 3D User Interfaces 3DUI 2008, pp. 97–104. (2008)Google Scholar
  11. Freitag, S., Rausch, D., Kuhlen, T.: Reorientation in virtual environments using interactive portals. In: IEEE Symposium on 3D User Interfaces 3DUI 2014, pp. 119–122. (2014)Google Scholar
  12. Guy, E., Punpongsanon, P., Iwai, D., Sato, K., Boubekeur, T.: LazyNav: 3D ground navigation with non-critical body parts. In: IEEE Symposium on 3D User Interfaces 3DUI 2015, pp. 43–50. (2015)Google Scholar
  13. Harris, A., Nguyen, K., Wilson, P.T., Jackoski, M., Williams, B.: Human joystick: Wii-leaning to translate in large virtual environments. In: Proceedings of the 13th ACM SIGGRAPH International Conference on Virtual-Reality Continuum and its Applications in Industry, pp. 231–234. ACM (2014)Google Scholar
  14. Insook, C., Ricci, C.: Foot-mounted gesture detection and its application in virtual environments. In: IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation, vol. 4245, pp. 4248–4253. (1997)Google Scholar
  15. Iwata, H.: The Torus Treadmill: realizing locomotion in VEs. IEEE Comput. Graph. Appl. 19, 30–35 (1999a)CrossRefGoogle Scholar
  16. Iwata, H.: Walking about virtual environments on an infinite floor. In: Proceedings of IEEE Virtual Reality, pp. 286–293. (1999b)Google Scholar
  17. Iwata, H., Yano, H., Fukushima, H., Noma, H.: CirculaFloor [locomotion interface]. IEEE Comput. Graph. Appl. 25, 64–67 (2005)CrossRefGoogle Scholar
  18. Iwata, H., Yano, H., Tomioka, H.: Powered shoes. In: ACM SIGGRAPH 2006 Emerging Technologies, p. 28. ACM (2006)Google Scholar
  19. Jiung-Yao, H.: An omnidirectional stroll-based virtual reality interface and its application on overhead crane training. IEEE Trans. Multimedia. 5, 39–51 (2003)CrossRefGoogle Scholar
  20. Kim, J., Gracanin, D., Quek, F.: Sensor-fusion walking-in-place interaction technique using mobile devices. In: IEEE Virtual Reality Short Papers and Posters (VRW), pp 39–42. IEEE (2012)Google Scholar
  21. Kohli, L., Burns, E., Miller, D., Fuchs, H.: Combining passive haptics with redirected walking. In: Proceedings of the 2005 International Conference on Augmented Tele-Existence, pp. 253–254. ACM (2005)Google Scholar
  22. Marsh, W., Kelly, J., Dark, V., Oliver, J.: Cognitive demands of semi-natural virtual locomotion. Presence. 22, 216–234 (2013)CrossRefGoogle Scholar
  23. Matthies, D.J.C. et al.: ShoeSoleSense: proof of concept for a wearable foot interface for virtual and real environments. In: Proceedings of the 19th ACM Symposium on Virtual Reality Software and Technology, pp. 93–96. ACM (2013)Google Scholar
  24. Nabiyouni, M., Saktheeswaran, A., Bowman, D.A., Karanth, A.: Comparing the performance of natural, semi-natural, and non-natural locomotion techniques in virtual reality. In: IEEE Symposium on 3D User Interfaces 3DUI 2015, pp. 3–10. IEEE (2015)Google Scholar
  25. Nilsson, N.C., Serafin, S., Laursen, M.H., Pedersen, K.S., Sikstrom, E., Nordahl, R.: Tapping-In-Place: increasing the naturalness of immersive walking-in-place locomotion through novel gestural input. In: IEEE Symposium on 3D User Interfaces 3DUI 2013, pp. 31–38. IEEE (2013a)Google Scholar
  26. Nilsson, N.C., Serafin, S., Nordahl, R.: The Perceived naturalness of virtual locomotion methods devoid of explicit leg movements. In: Proceedings of Motion on Games, pp. 155–164. ACM (2013b)Google Scholar
  27. Nilsson, N.C., Serafin, S., Nordahl, R.: Establishing the range of perceptually natural visual walking speeds for virtual walking-in-place locomotion. IEEE Trans. Vis. Comput. Graph. 20, 569–578 (2014)CrossRefGoogle Scholar
  28. Peck, T.C., Fuchs, H., Whitton, M.C.: Improved redirection with distractors: a large-scale-real-walking locomotion interface and its effect on navigation in virtual environments. In: Proceedings of 2010 I.E. Virtual Reality Conference (VR), pp. 35–38. IEEE (2010)Google Scholar
  29. Peck, T.C., Fuchs, H., Whitton, M.C.: An evaluation of navigational ability comparing redirected free exploration with distractors to walking-in-place and joystick locomotion interfaces. In: Proceedings of 2012 I.E. Virtual Reality Conference (VR), pp. 55–62. IEEE (2011)Google Scholar
  30. Peck, T.C., Fuchs, H., Whitton, M.C.: The design and evaluation of a large-scale real-walking locomotion interface. IEEE Trans. Vis. Comput. Graph. 18, 1053–1067 (2012)CrossRefGoogle Scholar
  31. Razzaque, S., Kohn, Z., Whitton, M.C.: Redirected Walking. University of North Carolina at Chapel Hill (2001)Google Scholar
  32. Riecke, B.E., Bodenheimer, B., McNamara, T.P., Williams, B., Peng, P., Feuereissen, D.: Do we need to walk for effective virtual reality navigation? Physical rotations alone may suffice. In: Proceedings of the Spatial Cognition International Conference, pp. 234–247. (2010)Google Scholar
  33. Robinett, W., Holloway, R.: Implementation of flying, scaling and grabbing in virtual worlds. In: Proceedings of the 1992 Symposium on Interactive 3D Graphics, pp. 189–192. (1992)Google Scholar
  34. Ruddle, R.A., Lessels, S.: For efficient navigational search, humans require full physical movement, but not a rich visual scene. Psychol. Sci. 17, 460–465 (2006)CrossRefGoogle Scholar
  35. Ruddle, R.A., Volkova, E., Bulthoff, H.H.: Walking improves your cognitive map in environments that are large-scale and large in extent. ACM Trans. Comput. Hum. Interact. 18, 1–20 (2011)CrossRefGoogle Scholar
  36. Schwaiger, M., Thummel, T., Ulbrich, H.: Cyberwalk: an advanced prototype of a belt array platform. In: Proceedings of IEEE International Workshop on Haptic, Audio and Visual Environments and Games, pp. 50–55. (2007)Google Scholar
  37. Slater, M., Steed, A., Usoh, M.: The virtual treadmill: a naturalistic metaphor for navigation in immersive virtual environments. In: Proceedings of Eurographics Workshops on Virtual Environments ′95, pp. 135–148. (1995a)Google Scholar
  38. Slater, M., Usoh, M., Steed, A.: Taking steps: the influence of a walking technique on presence in virtual reality. ACM Trans. Comput. Hum. Interact. 2, 201–219 (1995b)CrossRefGoogle Scholar
  39. Souman, J.L., et al.: CyberWalk: enabling unconstrained omnidirectional walking through virtual environments. ACM Trans. Appl. Percept. 8, 1–22 (2008)CrossRefGoogle Scholar
  40. Steinicke, F., Bruder, G., Jerald, J., Frenz, H., Lappe, M.: Analyses of human sensitivity to redirected walking. In: Proceedings of the 2008 ACM Symposium on Virtual Reality Software and Technology, pp. 149–156. (2008)Google Scholar
  41. Steinicke, F., Bruder, G., Hinrichs, K., Jerald, J., Frenz, H., Lappe, M.: Real walking through virtual environments by redirection techniques. J. Virtual Real. Broadcast. 6(2) (2009)Google Scholar
  42. Steinicke, F., Bruder, G., Jerald, J., Frenz, H., Lappe, M.: Estimation of detection thresholds for redirected walking techniques. IEEE Trans. Vis. Comput. Graph. 16, 17–27 (2010)CrossRefGoogle Scholar
  43. Suma, E.A., Clark, S., Krum, D., Finkelstein, S., Bolas, M., Warte, Z.: Leveraging change blindness for redirection in virtual environments. In: Proceedings of 2011 I.E. Virtual Reality Conference (VR), pp. 159–166. IEEE (2011)Google Scholar
  44. Suma, E.A., Lipps, Z., Finkelstein, S., Krum, D.M., Bolas, M.: Impossible spaces: maximizing natural walking in virtual environments with self-overlapping architecture. IEEE Trans. Vis. Comput. Graph. 18, 555–564 (2012)CrossRefGoogle Scholar
  45. Suryajaya, M., Lambert, T., Fowler, C.: Camera-based OBDP locomotion system. In: Proceedings of the 16th ACM Symposium on Virtual Reality Software and Technology, pp. 31–34. (2009)Google Scholar
  46. Templeman, J., Denbrook, P., Sibert, L.: Virtual locomotion: walking in place through virtual environments. Presence. 8, 598–617 (1999)CrossRefGoogle Scholar
  47. Terziman, L., Marchal, M., Emily, M., Multon, F., Arnaldi, B., Lécuyer, A.: Shake-your-head: revisiting walking-in-place for desktop virtual reality. In: Proceedings of the 17th ACM Symposium on Virtual Reality Software and Technology, pp. 27–34. (2010)Google Scholar
  48. Usoh, M., Arthur, K., Whitton, M.C., Bastos, R., Steed, A., Slater, M., Frederick, P., Brooks, J.: Walking > walking-in-place > flying, in virtual environments. In: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, pp. 359–364. (1999)Google Scholar
  49. Valkov, D., Steinicke, F., Bruder, G., Hinrichs, K.: A multi-touch enabled human-transporter metaphor for virtual 3D traveling. In: Proceedings of 2010 I.E. Symposium on 3D User Interfaces (3DUI), pp. 79–82. (2010)Google Scholar
  50. Vasylevska, K., Kaufmann, H., Bolas, M., Suma, E.A.: Flexible spaces: dynamic layout generation for infinite walking in virtual environments. In: Proceedings of 2013 I.E. Symposium on 3D User Interfaces (3DUI), pp. 39–42. (2013)Google Scholar
  51. Ware, C., Osborne, S.: Exploration and virtual camera control in virtual three dimensional environments. Proc. SIGGRAPH. Comput. Graph. 24, 175–183 (1990)CrossRefGoogle Scholar
  52. Wendt J.D, Whitton M.C, Brooks F.P.: GUD WIP: gait-understanding-driven walking-in-place. In: Proceedings of 2010 I.E. Virtual Reality Conference (VR), pp. 51–58. (2010)Google Scholar
  53. Whitton, M.C., Peck, T.C.: Stepping-Driven Locomotion Interfaces. Human Walking in Virtual Environments: Perception, Technology, and Applications, pp. 241–262. Springer, New York (2013)CrossRefGoogle Scholar
  54. Whitton M.C et al.: Comparing VE locomotion interfaces. In: Proceedings of IEEE Virtual Reality (VR), pp. 123–130. IEEE (2005)Google Scholar
  55. Williams, B., Narasimham, G., Rump, B., McNamara, T.P., Carr, T.H., Rieser, J., Bodenheimer, B.: Exploring large virtual environments with an HMD when physical space is limited. In: Proceedings of the 4th Symposium on Applied Perception in Graphics and Visualization, pp. 41–48. (2007)Google Scholar
  56. Williams, B., Bailey, S., Narasimham, G., Li, M., Bodenheimer, B.: Evaluation of walking in place on a Wii balance board to explore a virtual environment. ACM Trans. Appl. Percept. 8, 1–14 (2011)CrossRefGoogle Scholar
  57. Zhixin, Y., Lindeman, R.W.: A multi-touch finger gesture based low-fatigue VR travel framework. In: Proceedings of 2015 I.E. Symposium on 3D User Interfaces (3DUI), pp. 193–194. (2015)Google Scholar
  58. Zielinski, D.J., McMahan, R.P., Brady, R.B.: Shadow walking: an unencumbered locomotion technique for systems with under-floor projection. In: Proceedings of 2011 I.E. Virtual Reality Conference (VR), pp. 167–170. IEEE (2011)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of InformationUniversity of ArizonaTucsonUSA