Skip to main content

Postoperative Care of the Intestinal Recipient: Graft Monitoring, Nutrition, and Management of Medical Complications

  • Living reference work entry
  • First Online:
Solid Organ Transplantation in Infants and Children

Part of the book series: Organ and Tissue Transplantation ((OTT))

  • 97 Accesses

Abstract

Significant improvements have been made in early outcomes following pediatric intestinal transplantation (ITx), yet long-term survival remains challenged by infection and rejection, both of which can present with diarrhea. While stool studies and endoscopy remain the gold standard for graft monitoring, less-invasive, timely, and accurate biomarkers are essential to help improve results. The use of calprotectin, citrulline, donor-specific antibodies, and other novel biomarkers is reviewed in this chapter. Nutrition following ITx is challenged by oral aversion, increased energy needs, malabsorption, and limited catch-up growth. Long-term growth and weight gain post-ITx can be predicted by hospitalizations, rejection, infection, and immunosuppression requirements. Deficiencies in micronutrients, including iron, zinc, and copper, as well as vitamins are commonplace post-ITx and require routine screening. Notable complications following ITx result from the high immunosuppression needs of these children and include tissue invasive CMV (7% prevalence), PTLD (15–20%), infectious enteritis (39–76%), and renal insufficiency (16%).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abu-Elmagd KM et al (2009) Lymphoproliferative disorders and de novo malignancies in intestinal and multivisceral recipients: improved outcomes with new outlooks. Transplantation 88(7):926–934

    Article  PubMed  Google Scholar 

  • Abu-Elmagd KM et al (2012) Preformed and de novo donor specific antibodies in visceral transplantation: long-term outcome with special reference to the liver. Am J Transplant 12(11):3047–3060

    Article  CAS  PubMed  Google Scholar 

  • Akpinar E et al (2008) Fecal calprotectin level measurements in small bowel allograft monitoring: a pilot study. Transplantation 85(9):1281–1286

    Article  PubMed  Google Scholar 

  • Alegre ML, Mannon RB, Mannon PJ (2014) The microbiota, the immune system and the allograft. Am J Transplant 14(6):1236–1248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alonso EM (2008) Growth and developmental considerations in pediatric liver transplantation. Liver Transpl 14(5):585–591

    Article  PubMed  Google Scholar 

  • Altimari A et al (2008) Blood monitoring of granzyme B and perforin expression after intestinal transplantation: considerations on clinical relevance. Transplantation 85(12):1778–1883

    Article  PubMed  Google Scholar 

  • Asaoka T et al (2011) Characteristic immune, apoptosis and inflammatory gene profiles associated with intestinal acute cellular rejection in formalin-fixed paraffin-embedded mucosal biopsies. Transpl Int 24(7): 697–707

    Article  CAS  PubMed  Google Scholar 

  • Asaoka T et al (2012) MicroRNA signature of intestinal acute cellular rejection in formalin-fixed paraffin-embedded mucosal biopsies. Am J Transplant 12(2): 458–468

    Article  CAS  PubMed  Google Scholar 

  • Ashokkumar C et al (2009) Allospecific CD154+ T cells identify rejection-prone recipients after pediatric small-bowel transplantation. Surgery 146(2):166–173

    Article  PubMed  Google Scholar 

  • Ashokkumar C et al (2010) Allospecific CD154+ B cells associate with intestine allograft rejection in children. Transplantation 90(11):1226–1231

    Article  CAS  PubMed  Google Scholar 

  • Brown KH (1998) Effect of infections on plasma zinc concentration and implications for zinc status assessment in low-income countries. Am J Clin Nutr 68(2 Suppl):S425–S429

    Google Scholar 

  • Chen CC et al (2007) Clinicopathological analysis of hematological disorders in tube-fed patients with copper deficiency. Intern Med 46(12):839–844

    Article  PubMed  Google Scholar 

  • Ching N et al (2010) Adenovirus infection and anti-viral treatment in pediatric solid organ transplant patients. Oral Presentation Pediatric Academic Societies Annual Meeting. Vancouver, Canada, 1–4, 2010.

    Google Scholar 

  • Colomb V, Goulet O (2009) Nutrition support after intestinal transplantation: how important is enteral feeding? Curr Opin Clin Nutr Metab Care 12(2):186–189

    Article  CAS  PubMed  Google Scholar 

  • Curis E, Crenn P, Cynober L (2007) Citrulline and the gut. Curr Opin Clin Nutr Metab Care 10(5):620–626

    Article  CAS  PubMed  Google Scholar 

  • David AI et al (2007) Blood citrulline level is an exclusionary marker for significant acute rejection after intestinal transplantation. Transplantation 84(9): 1077–1081

    Article  CAS  PubMed  Google Scholar 

  • Dharnidharka VR (2002) Post-transplant lymphoproliferative disorder in the United States: young Caucasian males are at highest risk. Am J Transplant 2(10): 993–998

    Article  PubMed  Google Scholar 

  • Encinas JL et al (2006) Nutritional status after intestinal transplantation in children. Eur J Pediatr Surg 16(6): 403–406

    Article  CAS  PubMed  Google Scholar 

  • Farmer DG et al (2015) Predictors of outcome after intestinal transplantation: an analysis of over 125 cases at a single center. Oral Presentation International Small Bowel Transplant Symposium, Buenos Aires, Argentina. 2015

    Google Scholar 

  • Fishbein TM (2009) Intestinal transplantation. N Engl J Med 361(10):998–1008

    Article  CAS  PubMed  Google Scholar 

  • Florescu DF et al (2010) Adenovirus infections in pediatric small bowel transplant recipients. Transplantation 90(2):198–204

    Article  PubMed  Google Scholar 

  • Florescu DF et al (2011) Is there a role for oral human immunoglobulin in the treatment for norovirus enteritis in immunocompromised patients? Pediatr Transplant 15(7):718–721

    Article  CAS  PubMed  Google Scholar 

  • Florescu DF et al (2012) Incidence, risk factors, and outcomes associated with cytomegalovirus disease in small bowel transplant recipients. Pediatr Transplant 16(3):294–301

    Article  CAS  PubMed  Google Scholar 

  • Girlanda R et al (2012) Metabolomics of human intestinal transplant rejection. Am J Transplant 12(4 Suppl):S18S–SS26

    Article  Google Scholar 

  • Grant D et al (2015) Intestinal transplant registry report: global activity and trends. Am J Transplant 15(1): 210–219

    Article  CAS  PubMed  Google Scholar 

  • Hayton BA, Broome HE, Lilenbaum RC (1995) Copper deficiency-induced anemia and neutropenia secondary to intestinal malabsorption. Am J Hematol 48(1):45–47

    Article  CAS  PubMed  Google Scholar 

  • Hibi T et al (2012) Citrulline level is a potent indicator of acute rejection in the long term following pediatric intestinal/multivisceral transplantation. Am J Transplant 12(4 Suppl):S27–S32

    Article  PubMed  Google Scholar 

  • Iyer K et al (2002) Nutritional outcome and growth of children after intestinal transplantation. J Pediatr Surg 37(3):464–466

    Article  PubMed  Google Scholar 

  • Konikoff MR, Denson LA (2006) Role of fecal calprotectin as a biomarker of intestinal inflammation in inflammatory bowel disease. Inflamm Bowel Dis 12(6):524–534

    Article  PubMed  Google Scholar 

  • Kowalski RJ et al (2006) Assessing relative risks of infection and rejection: a meta-analysis using an immune function assay. Transplantation 82(5):663–668

    Article  PubMed  Google Scholar 

  • Kumar AR et al (2011) Proteomic analysis reveals innate immune activity in intestinal transplant dysfunction. Transplantation 92(1):112–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lacaille F et al (2008) Long-term outcome, growth and digestive function in children 2 to 18 years after intestinal transplantation. Gut 57(4):455–461

    Article  CAS  PubMed  Google Scholar 

  • Lukacik M, Thomas RL, Aranda JV (2008) A meta-analysis of the effects of oral zinc in the treatment of acute and persistent diarrhea. Pediatrics 121(2): 326–336

    Article  PubMed  Google Scholar 

  • Mathew JM et al (2015) Role of innate and acquired immune mechanisms in clinical intestinal transplant rejection. Transplantation 99(6):1273–1281

    Article  CAS  PubMed  Google Scholar 

  • McColl KE (2009) Effect of proton pump inhibitors on vitamins and iron. Am J Gastroenterol 104(2 Suppl):S5–S9

    Article  CAS  PubMed  Google Scholar 

  • McDiarmid SV et al (1999) Factors affecting growth after pediatric liver transplantation. Transplantation 67(3): 404–411

    Article  CAS  PubMed  Google Scholar 

  • Mercer DF et al (2011) Stool calprotectin monitoring after small intestine transplantation. Transplantation 91(10): 1166–1171

    Article  CAS  PubMed  Google Scholar 

  • Mohan S et al (2012) Donor-specific antibodies adversely affect kidney allograft outcomes. J Am Soc Nephrol 23(12):2061–2071

    Article  PubMed  PubMed Central  Google Scholar 

  • Nassif S et al (2013) Clinicopathologic features of post-transplant lymphoproliferative disorders arising after pediatric small bowel transplant. Pediatr Transplant 17(8):765–773

    Article  CAS  PubMed  Google Scholar 

  • Ningappa M et al (2012) Mucosal plasma cell barrier disruption during intestine transplant rejection. Transplantation 94(12):1236–1242

    Article  CAS  PubMed  Google Scholar 

  • Nucci AM et al (2002a) Long-term nutritional outcome after pediatric intestinal transplantation. J Pediatr Surg 37(3):460–463

    Article  PubMed  Google Scholar 

  • Nucci AM et al (2002b) Enteral formula use in children after small bowel transplant. Nutr Clin Pract 17(2): 113–117

    Article  PubMed  Google Scholar 

  • Nucci AM et al (2003) Serum growth factors and growth indices pre- and post-pediatric intestinal transplantation. J Pediatr Surg 38(7):1043–1047

    Article  PubMed  Google Scholar 

  • Oh PL et al (2012) Characterization of the ileal microbiota in rejecting and nonrejecting recipients of small bowel transplants. Am J Transplant 12(3):753–762

    Article  CAS  PubMed  Google Scholar 

  • Ojo AO et al (2003) Chronic renal failure after transplantation of a nonrenal organ. N Engl J Med 349(10): 931–940

    Article  CAS  PubMed  Google Scholar 

  • Ordonez F et al (2013) Intestinal absorption rate in children after small intestinal transplantation. Am J Clin Nutr 97(4):743–749

    Article  CAS  PubMed  Google Scholar 

  • Quintini C et al (2006) Analysis of risk factors for the development of post-transplant lymphoprolipherative disorder among 119 children who received primary intestinal transplants at a single center. Transplant Proc 38(6):1755–1758

    Article  CAS  PubMed  Google Scholar 

  • Quiros-Tejeira RE et al (2004) Long-term parenteral nutritional support and intestinal adaption in children with short bowel syndrome: a 25-year experience. J Pediatr 145(2):157–163

    Article  PubMed  Google Scholar 

  • Ramos E et al (2013) Post-transplant lympoproiferative disorders and other malignancies after pediatric intestinal transplantation: incidence, clinical features and outcome. Pediatr Transplant 17(5):472–478

    Article  PubMed  Google Scholar 

  • Rivera JA et al (1998) Zinc supplementation improves the growth of stunted rural Guantemalan infants. J Nutr 128(3):556–562

    CAS  PubMed  Google Scholar 

  • Rothbaum RJ (1996) Complications of pediatric endoscopy. Gastrointest Enndosc Clin N Am 6(2):445–459

    CAS  Google Scholar 

  • Ruiz P et al (2004) Histological criteria for the identification of acute cellular rejection in human small bowl allografts: results of the pathology workshop at the VIII international small bowel transplant symposium. Transplant Proc 36(2):335–337

    Article  CAS  PubMed  Google Scholar 

  • Ruiz P et al (2010) International grading scheme for acute cellular rejection in small-bowel transplantation: single-center experience. Transplant Proc 42(1):47–53

    Article  CAS  PubMed  Google Scholar 

  • Ruz M et al (1997) A 14-mo zinc-supplementation trial in apparently healthy Chilean preschool children. Am J Clin Nutr 66(6):1406–1413

    CAS  PubMed  Google Scholar 

  • Sigurdsson L et al (1998a) Endoscopies in pediatric small intestinal transplant recipients: five years experience. Am J Gastroenterol 93(2):207–211

    Article  CAS  PubMed  Google Scholar 

  • Sigurdsson L et al (1998b) Anatomic variability of rejection in intestinal allografts after pediatric intestinal transplantation. J Pediatr Gastroenterol Nutr 27(4): 403–406

    Article  CAS  PubMed  Google Scholar 

  • Silva JT et al (2016) Infectious complications following small bowel transplantation. Am J Transplant 16(3): 951–959

    Article  CAS  PubMed  Google Scholar 

  • Strohm S et al (1999) Nutrition management in pediatric small bowel transplant. Nutr Clin Pract 14:58–63

    Article  Google Scholar 

  • Sudan DL et al (2000) Assessment of function, growth and development, and long-term quality of life after small bowel transplantation. Transplant Proc 32(6): 1211–1212

    Article  CAS  PubMed  Google Scholar 

  • Sudan D et al (2007) Calprotectin: a novel noninvasive marker for intestinal allograft monitoring. Ann Surg 246(2):311–315

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun Y et al (2010) Plasma nitrite and nitrate levels as a noninvasive marker of pathology after human small bowel transplantation. Transplantation 89(3):307–311

    Article  CAS  PubMed  Google Scholar 

  • Ubesie AC et al (2013) Micronutrient deficiencies in pediatric and young adult intestinal transplant patients. Pediatr Transplant 17(7):638–645

    CAS  PubMed  PubMed Central  Google Scholar 

  • Venick RS et al (2006) Nutritional outcomes following pediatric intestinal transplantation. Transplant Proc 38(6):1718–1719

    Article  CAS  PubMed  Google Scholar 

  • Venick RS et al (2011) Long-term nutrition and predictors of growth and weight gain following pediatric intestinal transplantation. Transplantation 92(9):1058–1062

    CAS  PubMed  Google Scholar 

  • Venick RS, Kositamongkol P, Wozniak LJ (2012) Prophylatic and pre-emptive therapies using ganciclovir and CMV immunoglobulin result in a significant reduction of CMV disease after intestinal transplantation. Oral Presentation. International Congress of the Transplantation Society, Berlin, Germany 2012

    Google Scholar 

  • Watson MJ et al (2008) Renal function impacts outcomes after intestinal transplantation. Transplantation 86(1): 117–122

    Article  PubMed  Google Scholar 

  • Wozniak LJ et al (2014) Utility of an immune cell function assay to differentiate rejection from infectious enteritis in pediatric intestinal transplant recipients. Clin Transpl 28(2):229–235

    Article  CAS  Google Scholar 

  • Wozniak L et al. (2015) Why the surge in PTLD? An update on PTLD following intestinal transplantation. Oral Presentation. International Small Bowel Transplant Symposium. Buenos Aires, Argentina 2015

    Google Scholar 

  • Wu T et al (2003) A schema for histologic grading of small intestine allograft acute rejection. Transplantation 75(8):1241

    Article  PubMed  Google Scholar 

  • Yeh J et al (2015) Endoscopy following pediatric intestinal transplant. J Pediatr Gastroenterol Nutr 61(6):636–640

    Article  PubMed  PubMed Central  Google Scholar 

  • Zambernardi A et al (2014) Immunosuppressive therapies after intestinal transplant modulate the expression of Th1 signature genes during acute cellular rejection. Implications in the search for rejection biomarkers. Clin Transpl 28(12):1365–1371

    Article  CAS  Google Scholar 

  • Ziring D et al (2005) Infectious enteritis after intestinal transplantation: incidence, timing, and outcome. Transplantation 79(6):702–709

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert S. Venick .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Venick, R.S., Cheng, E.Y. (2017). Postoperative Care of the Intestinal Recipient: Graft Monitoring, Nutrition, and Management of Medical Complications. In: Dunn, S., Horslen, S. (eds) Solid Organ Transplantation in Infants and Children. Organ and Tissue Transplantation. Springer, Cham. https://doi.org/10.1007/978-3-319-08049-9_24-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08049-9_24-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08049-9

  • Online ISBN: 978-3-319-08049-9

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics