Cardiac Support Devices and Their Use in Infants and Children in the Overall Strategy of Cardiac Transplantation

  • Ryan R. Davies
  • Michael A. McCulloch
Reference work entry
Part of the Organ and Tissue Transplantation book series (OTT)


Historically, extracorporeal membrane oxygenation (ECMO) was the predominant form of mechanical circulatory support (MCS) in children. However, the approval of a VAD for use in pediatrics, along with technical improvements and progressive miniaturization of adult devices, has resulted in a rapid increase in the options available for pediatric MCS. Small size and the presence of congenital heart disease add complexity to MCS. With individualized optimization of support based on physiology, anatomy, and cause of heart failure, MCS has the potential to improve survival to and following heart transplantation. In specific cases, MCS may even supplant heart transplantation as optimal treatment for end-stage heart failure.


Heart transplant Mechanical circulatory support Ventricular assist device Pediatrics Heart failure 


  1. Aaronson KD, Slaughter MS, Miller LW et al (2012) Use of an intrapericardial, continuous-flow, centrifugal pump in patients awaiting heart transplantation. Circulation 125:3191–3200. CrossRefPubMedGoogle Scholar
  2. Acker MA, Pagani FD, Stough WG et al (2013) Statement regarding the pre and post market assessment of durable, implantable ventricular assist devices in the United States. Circ Heart Fail 6:e1–e11. CrossRefPubMedGoogle Scholar
  3. Almond CS, Morales DL, Blackstone EH et al (2013) Berlin Heart EXCOR pediatric ventricular assist device for bridge to heart transplantation in US children. Circulation 127:1702–1711. CrossRefPubMedGoogle Scholar
  4. Burkhoff D, Sayer G, Doshi D, Uriel N (2015) Hemodynamics of mechanical circulatory support. J Am Coll Cardiol 66:2663–2674. CrossRefPubMedGoogle Scholar
  5. Cabrera AG, Sundareswaran KS, Samayoa AX et al (2013) Outcomes of pediatric patients supported by the HeartMate II left ventricular assist device in the United States. J Heart Lung Transplant 32:1107–1113. CrossRefPubMedGoogle Scholar
  6. Canter CE, Simpson KE (2014) Diagnosis and treatment of myocarditis in children in the current era. Circulation 129:115–128. CrossRefPubMedGoogle Scholar
  7. Char DS, Lee SS-J, Ikoku AA et al (2016) Can destination therapy be implemented in children with heart failure? A study of provider perceptions. Pediatr Transplant 20:819–824. CrossRefPubMedGoogle Scholar
  8. Conway J, St Louis J, Morales DLS et al (2015) Delineating survival outcomes in children <10 kg bridged to transplant or recovery with the Berlin Heart EXCOR Ventricular Assist Device. JACC Heart Fail 3:70–77. CrossRefPubMedGoogle Scholar
  9. Davies RR, Russo MJ, Hong KN et al (2008) The use of mechanical circulatory support as a bridge to transplantation in pediatric patients: an analysis of the United Network for Organ Sharing database. J Thorac Cardiovasc Surg 135:421–427.e1. CrossRefPubMedGoogle Scholar
  10. Davies RR, Haldeman S, McCulloch MA, Pizarro C (2014a) Creation of a quantitative score to predict the need for mechanical support in children awaiting heart transplant. Ann Thorac Surg 98:675–682, discussion 682–684.
  11. Davies RR, Haldeman S, McCulloch MA, Pizarro C (2014b) Ventricular assist devices as a bridge-to-transplant improve early post-transplant outcomes in children. J Heart Lung Transplant 33:704–712. CrossRefPubMedGoogle Scholar
  12. Davies RR, Priest M, Pizarro C (2015) First use of an intra-pericardial continuous flow ventricular assist device in a child with muscular dystrophy. Cardiol Young 25:184–186. CrossRefPubMedGoogle Scholar
  13. Feldman D, Pamboukian SV, Teuteberg JJ et al (2013) The 2013 International Society for Heart and Lung Transplantation Guidelines for mechanical circulatory support: executive summary. J Heart Lung Transplant 32:157–187. CrossRefPubMedGoogle Scholar
  14. Foerster SR, Canter CE, Cinar A et al (2010) Ventricular remodeling and survival are more favorable for myocarditis than for idiopathic dilated cardiomyopathy in childhood: an outcomes study from the Pediatric Cardiomyopathy Registry. Circ Heart Fail 3:689–697. CrossRefPubMedGoogle Scholar
  15. Fraser CD, Jaquiss RDB, Rosenthal DN et al (2012) Prospective trial of a pediatric ventricular assist device. N Engl J Med 367:532–541. CrossRefPubMedGoogle Scholar
  16. Hollander SA, Axelrod DM, Bernstein D et al (2016) Compassionate deactivation of ventricular assist devices in pediatric patients. J Heart Lung Transplant 35:564–567. CrossRefPubMedGoogle Scholar
  17. Iodice F, Testa G, Averardi M et al (2015) Implantation of a left ventricular assist device as a destination therapy in Duchenne muscular dystrophy patients with end stage cardiac failure: management and lessons learned. Neuromuscul Disord 25:19–23. CrossRefPubMedGoogle Scholar
  18. Irby K, Swearingen CJ, Byrnes JW et al (2014) Unfractionated heparin activity measured by anti-factor Xa levels is associated with the need for ECMO circuit/membrane oxygenator change: a retrospective pediatric study. Pediatr Crit Care Med 15:e175–e182. CrossRefPubMedPubMedCentralGoogle Scholar
  19. Jordan LC, Ichord RN, Reinhartz O et al (2015) Neurological complications and outcomes in the Berlin Heart EXCOR® pediatric investigational device exemption trial. J Am Heart Assoc 4:e001429. CrossRefPubMedPubMedCentralGoogle Scholar
  20. Kirk R, Peng E, Woods A et al (2016) Successful HeartWare bridge to recovery in a 3-year old: a game changer? Ann Thorac Surg 101:1984–1987. CrossRefPubMedGoogle Scholar
  21. Kirklin JK, Naftel DC, Kormos RL et al (2011) Third INTERMACS annual report: the evolution of destination therapy in the United States. J Heart Lung Transplant 30:115–123. CrossRefPubMedGoogle Scholar
  22. Kirklin JK, Naftel DC, Pagani FD, et al (2012) Long-term mechanical circulatory support (destination therapy): on track to compete with heart transplantation? J Thorac Cardiovasc Surg 144:584–603, discussion 597–598.
  23. Kirklin JK, Naftel DC, Pagani FD et al (2014) Sixth INTERMACS annual report: a 10,000-patient database. J Heart Lung Transplant 33:555–564. CrossRefPubMedGoogle Scholar
  24. Kirklin JK, Naftel DC, Pagani FD et al (2015) Seventh INTERMACS annual report: 15,000 patients and counting. J Heart Lung Transplant 34:1495–1504. CrossRefPubMedGoogle Scholar
  25. Miera O, Kirk R, Buchholz H et al (2016) A multicenter study of the HeartWare ventricular assist device in small children. J Heart Lung Transplant 35:679–681. CrossRefPubMedGoogle Scholar
  26. Niebler RA, Ghanayem NS, Shah TK et al (2014) Use of a HeartWare ventricular assist device in a patient with failed fontan circulation. Ann Thorac Surg 97:e115–e116. CrossRefPubMedGoogle Scholar
  27. Park SJ, Milano CA, Tatooles AJ et al (2012) Outcomes in advanced heart failure patients with left ventricular assist devices for destination therapy. Circ Heart Fail 5:241–248. CrossRefPubMedGoogle Scholar
  28. Rogers JG, Aaronson KD, Boyle AJ et al (2010) Continuous flow left ventricular assist device improves functional capacity and quality of life of advanced heart failure patients. J Am Coll Cardiol 55:1826–1834. CrossRefPubMedGoogle Scholar
  29. Rossano JW, Goldberg DJ, Fuller S et al (2014) Successful use of the total artificial heart in the failing fontan circulation. Ann Thorac Surg 97:1438–1440. CrossRefPubMedGoogle Scholar
  30. Rossano JW, Lorts A, VanderPluym CJ et al (2016) Outcomes of pediatric patients supported with continuous-flow ventricular assist devices: a report from the Pediatric Interagency Registry for Mechanical Circulatory Support (PediMACS). J Heart Lung Transplant 35:585–590. CrossRefPubMedGoogle Scholar
  31. Ryan TD, Jefferies JL, Sawnani H et al (2014) Implantation of the HeartMate II and HeartWare left ventricular assist devices in patients with duchenne muscular dystrophy: lessons learned from the first applications. ASAIO J 60:246–248. CrossRefPubMedGoogle Scholar
  32. Seguchi O, Kuroda K, Fujita T et al (2016) Advanced heart failure secondary to muscular dystrophy: clinical outcomes after left ventricular assist device implantation. J Heart Lung Transplant 35:831–834. CrossRefPubMedGoogle Scholar
  33. Slaughter MS, Rogers JG, Milano CA et al (2009) Advanced heart failure treated with continuous-flow left ventricular assist device. N Engl J Med 361:2241–2251. CrossRefPubMedGoogle Scholar
  34. Starling RC, Moazami N, Silvestry SC et al (2014) Unexpected abrupt increase in left ventricular assist device thrombosis. N Engl J Med 370:33–40. CrossRefPubMedGoogle Scholar
  35. Stein ML, Dao DT, Doan LN et al (2016) Ventricular assist devices in a contemporary pediatric cohort: morbidity, functional recovery, and survival. J Heart Lung Transplant 35:92–98. CrossRefPubMedGoogle Scholar
  36. Strueber M, Larbalestier R, Jansz P et al (2014) Results of the post-market Registry to Evaluate the HeartWare Left Ventricular Assist System (ReVOLVE). J Heart Lung Transplant 33:486–491. CrossRefPubMedGoogle Scholar
  37. Swetz KM, Freeman MR, AbouEzzeddine OF et al (2011a) Palliative medicine consultation for preparedness planning in patients receiving left ventricular assist devices as destination therapy. Mayo Clin Proc 86:493–500. CrossRefPubMedPubMedCentralGoogle Scholar
  38. Swetz KM, Ottenberg AL, Freeman MR, Mueller PS (2011b) Palliative care and end-of-life issues in patients treated with left ventricular assist devices as destination therapy. Curr Heart Fail Rep 8:212–218. CrossRefPubMedGoogle Scholar
  39. Swetz KM, Kamal AH, Matlock DD et al (2014) Preparedness planning before mechanical circulatory support: a “how-to” guide for palliative medicine clinicians. J Pain Symptom Manag 47:926–935.e6. CrossRefGoogle Scholar
  40. Teele SA, Salvin JW, Barrett CS et al (2014) The association of carotid artery cannulation and neurologic injury in pediatric patients supported with venoarterial extracorporeal membrane oxygenation*. Pediatr Crit Care Med 15:355–361. CrossRefPubMedGoogle Scholar
  41. Topilsky Y, Pereira NL, Shah DK et al (2011) Left ventricular assist device therapy in patients with restrictive and hypertrophic cardiomyopathy. Circ Heart Fail 4:266–275. CrossRefPubMedGoogle Scholar
  42. Towbin JA, Lowe AM, Colan SD et al (2006) Incidence, causes, and outcomes of dilated cardiomyopathy in children. JAMA 296:1867–1876. CrossRefPubMedGoogle Scholar
  43. Uriel N, Han J, Morrison KA et al (2014) Device thrombosis in HeartMate II continuous-flow left ventricular assist devices: a multifactorial phenomenon. J Heart Lung Transplant 33:51–59. CrossRefPubMedGoogle Scholar
  44. Weinstein S, Bello R, Pizarro C et al (2014) The use of the Berlin Heart EXCOR in patients with functional single ventricle. J Thorac Cardiovasc Surg 147:697–705. CrossRefPubMedGoogle Scholar
  45. Wu RS, Gupta S, Brown RN et al (2010) Clinical outcomes after cardiac transplantation in muscular dystrophy patients. J Heart Lung Transplant 29:432–438. CrossRefPubMedGoogle Scholar
  46. Zafar F, Villa CR, Morales DL et al (2017) Does small size matter with continuous flow devices? Analysis of the INTERMACS database of adults with BSA ≤1.5 m(2). JACC Heart Fail 5:123–131. CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of Texas Southwestern Medical CenterDallasUSA
  2. 2.Pediatric CardiologyUniversity of Virginia Children’s Hospital Heart CenterCharlottesvilleUSA

Section editors and affiliations

  • Ryan R. Davies
    • 1
  1. 1.University of Texas Southwestern Medical CenterDallasUSA

Personalised recommendations