Induction and Standard Immunosuppression

  • David M. Newland
  • Thomas L. Nemeth
Reference work entry
Part of the Organ and Tissue Transplantation book series (OTT)


Solid organ transplantation (SOT) is a life-saving procedure for patients with end-stage organ disease. In order to maximize long-term patient and allograft survival, transplant practitioners must skillfully maintain an overall net state of immunosuppression necessary to prevent allograft rejection while also limiting the risk of opportunistic infections, avoiding malignancy, and minimizing adverse effects of chronic immunosuppression. Biologic induction agents are utilized in the majority of pediatric SOT with the exception of liver transplant recipients. Modern-day maintenance immunosuppression in pediatric SOT typically consists of tacrolimus ± mycophenolate mofetil and/or corticosteroids. Due to ontogenic changes in growth and development, the absorption, distribution, metabolism, and excretion (ADME) properties of various drugs, especially immunosuppressive medications, may be difficult to predict and therefore require very close monitoring for safety and efficacy. Chronic administration of immunosuppressive medications in infants and children can negatively impact growth, development, and quality of life (QOL) that in some cases result in nonadherence to prescribed therapy, vastly compromising allograft survival.


Solid organ transplantation Immunosuppression Adverse effects Infants Children 


  1. Alcorn J, McNamara PJ (2003) Pharmacokinetics in the newborn. Adv Drug Deliv Rev 55(5):667–686PubMedCrossRefGoogle Scholar
  2. Alemtuzumab (Package Insert) [webpage on the internet], ed. Highlights of prescribing information. Genzyme Corporation, Cambridge, MA (2014)Google Scholar
  3. Ansari D, Hoglund P, Andersson B, Nilsson J (2015) Comparison of basiliximab and anti-thymocyte globulin as induction therapy in pediatric heart transplantation: a survival analysis. J Am Heart Assoc 5(1).
  4. Balfour IC, Srun SW, Wood EG, Belsha CW, Marshall DL, Ferdman BR (2006) Early renal benefit of rapamycin combined with reduced calcineurin inhibitor dose in pediatric heart transplantation patients. J Heart Lung Transplant 25(5):518–522PubMedCrossRefGoogle Scholar
  5. Barama A et al (2000) Absorption profiling of cyclosporine therapy for de nova kidney transplantation: a prospective randomized study comparing sparse sampling to trough monitoring [abstract no. 190]. Transplantation 69(Suppl):S162CrossRefGoogle Scholar
  6. Basiliximab (Package Insert) [webpage on the internet], ed. Highlights of prescribing information. Novartis Pharmaceuticals Corporation, East Hanover (2005)Google Scholar
  7. Basso MS, Subramaniam P, Tredger M et al (2011) Sirolimus as renal and immunological rescue agent in pediatric liver transplant recipients. Pediatr Transplant 15(7):722–727PubMedCrossRefGoogle Scholar
  8. Baxter JD (1992) The effects of glucocorticoid therapy. Hosp Pract (Off Ed) 27(9):111–114. 115–118, 123 passimCrossRefGoogle Scholar
  9. Becker-Cohen R, Ben-Shalom E, Rinat C, Feinstein S, Geylis M, Frishberg Y (2015) Severe neutropenia in children after renal transplantation: incidence, course, and treatment with granulocyte colony-stimulating factor. Pediatr Nephrol 30(11):2029–2036PubMedCrossRefGoogle Scholar
  10. Behnke-Hall K, Bauer J, Thul J et al (2011) Renal function in children with heart transplantation after switching to CNI-free immunosuppression with everolimus. Pediatr Transplant 15(8):784–789PubMedCrossRefGoogle Scholar
  11. Benfield MR, Bartosh S, Ikle D et al (2010) A randomized double-blind, placebo controlled trial of steroid withdrawal after pediatric renal transplantation. Am J Transplant 10(1):81–88PubMedCrossRefGoogle Scholar
  12. Billing H, Burmeister G, Plotnicki L et al (2013) Longitudinal growth on an everolimus- versus an MMF-based steroid-free immunosuppressive regimen in paediatric renal transplant recipients. Transpl Int 26(9):903–909PubMedCrossRefGoogle Scholar
  13. Blydt-Hansen TD, Gibson IW, Birk PE (2010) Histological progression of chronic renal allograft injury comparing sirolimus and mycophenolate mofetil-based protocols. A single-center, prospective, randomized, controlled study. Pediatr Transplant 14(7):909–918PubMedCrossRefGoogle Scholar
  14. Bonnefoy-Berard N, Vincent C, Revillard JP (1991) Antibodies against functional leukocyte surface molecules in polyclonal antilymphocyte and antithymocyte globulins. Transplantation 51(3):669–673PubMedCrossRefGoogle Scholar
  15. Bowles A, Keane J, Ernest T, Clapham D, Tuleu C (2010) Specific aspects of gastro-intestinal transit in children for drug delivery design. Int J Pharm 395(1–2):37–43PubMedCrossRefGoogle Scholar
  16. Brooks E, Tett SE, Isbel NM, Staatz CE (2016) Population pharmacokinetic modelling and bayesian estimation of tacrolimus exposure: is this clinically useful for dosage prediction yet? Clin Pharmacokinet 55(11):1295–1335PubMedCrossRefGoogle Scholar
  17. Brouwer KL, Aleksunes LM, Brandys B et al (2015) Human ontogeny of drug transporters: review and recommendations of the pediatric transporter working group. Clin Pharmacol Ther 98(3):266–287PubMedPubMedCentralCrossRefGoogle Scholar
  18. Casas-Melley AT, Falkenstein KP, Flynn LM, Ziegler VL, Dunn SP (2004) Improvement in renal function and rejection control in pediatric liver transplant recipients with the introduction of sirolimus. Pediatr Transplant 8(4):362–366PubMedCrossRefGoogle Scholar
  19. CellCept [Package Insert] [webpage on the internet], ed. Highlights of prescribing information. Genentech USA, South San Francisco (2015)Google Scholar
  20. Chinnock TJ, Shankel T, Deming D et al (2011) Calcineurin inhibitor minimization using sirolimus leads to improved renal function in pediatric heart transplant recipients. Pediatr Transplant 15(7):746–749PubMedCrossRefGoogle Scholar
  21. Ciancio G, Burke GW, Gaynor JJ et al (2004) The use of campath-1H as induction therapy in renal transplantation: preliminary results. Transplantation 78(3):426–433PubMedCrossRefGoogle Scholar
  22. Coelho T, Tredger M, Dhawan A (2012) Current status of immunosuppressive agents for solid organ transplantation in children. Pediatr Transplant 16(2):106–122PubMedCrossRefGoogle Scholar
  23. Colvin MM, Cook JL, Chang P et al (2015) Antibody-mediated rejection in cardiac transplantation: emerging knowledge in diagnosis and management: a scientific statement from the American heart association. Circulation 131(18):1608–1639PubMedCrossRefGoogle Scholar
  24. Colvin M, Smith JM, Skeans MA et al (2017) OPTN/SRTR 2015 annual data report: heart. Am J Transplant 17:286–356PubMedCrossRefGoogle Scholar
  25. Cransberg K, Marlies Cornelissen EA, Davin JC et al (2005) Improved outcome of pediatric kidney transplantations in the Netherlands – effect of the introduction of mycophenolate mofetil? Pediatr Transplant 9(1):104–111PubMedCrossRefGoogle Scholar
  26. Crins ND, Rover C, Goralczyk AD, Friede T (2014) Interleukin-2 receptor antagonists for pediatric liver transplant recipients: a systematic review and meta-analysis of controlled studies. Pediatr Transplant 18(8):839–850PubMedCrossRefGoogle Scholar
  27. Crowson CN, Reed RD, Shelton BA, MacLennan PA, Locke JE (2017) Lymphocyte-depleting induction therapy lowers the risk of acute rejection in African American pediatric kidney transplant recipients. Pediatr Transplant 21(1). Epub 2016 Oct 3
  28. De Simone P, Nevens F, De Carlis L et al (2012) Everolimus with reduced tacrolimus improves renal function in de novo liver transplant recipients: a randomized controlled trial. Am J Transplant 12(11):3008–3020PubMedPubMedCentralCrossRefGoogle Scholar
  29. Dervieux T, Blanco JG, Krynetski EY, Vanin EF, Roussel MF, Relling MV (2001) Differing contribution of thiopurine methyltransferase to mercaptopurine versus thioguanine effects in human leukemic cells. Cancer Res 61(15):5810–5816PubMedGoogle Scholar
  30. Dhawan A (2011) Immunosuppression in pediatric liver transplantation: are little people different? Liver Transpl 17(Suppl 3):S13–S19PubMedCrossRefGoogle Scholar
  31. Djamali A, Kaufman DB, Ellis TM, Zhong W, Matas A, Samaniego M (2014) Diagnosis and management of antibody-mediated rejection: current status and novel approaches. Am J Transplant 14(2):255–271PubMedPubMedCentralCrossRefGoogle Scholar
  32. DuBuske LM (2005) The role of P-glycoprotein and organic anion-transporting polypeptides in drug interactions. Drug Saf 28(9):789–801PubMedCrossRefGoogle Scholar
  33. Ekberg H, Tedesco-Silva H, Demirbas A et al (2007) Reduced exposure to calcineurin inhibitors in renal transplantation. N Engl J Med 357(25):2562–2575PubMedCrossRefGoogle Scholar
  34. Elbarbry FA, Marfleet T, Shoker AS (2008) Drug-drug interactions with immunosuppressive agents: review of the in vitro functional assays and role of cytochrome P450 enzymes. Transplantation 85(9):1222–1229PubMedCrossRefGoogle Scholar
  35. Emoto C, Vinks AA, Fukuda T (2016) Risk assessment of drug-drug interactions of calcineurin inhibitors affecting sirolimus pharmacokinetics in renal transplant patients. Ther Drug Monit 38(5):607–613PubMedCrossRefGoogle Scholar
  36. Ettenger RB, Grimm EM (2001) Safety and efficacy of TOR inhibitors in pediatric renal transplant recipients. Am J Kidney Dis 38(4 Suppl 2):S22–S28PubMedCrossRefGoogle Scholar
  37. Ettenger R, Hoyer PF, Grimm P et al (2008) Multicenter trial of everolimus in pediatric renal transplant recipients: results at three year. Pediatr Transplant 12(4):456–463PubMedCrossRefGoogle Scholar
  38. Fasolo A, Sessa C (2012) Targeting mTOR pathways in human malignancies. Curr Pharm Des 18(19):2766–2777PubMedCrossRefGoogle Scholar
  39. Ferraris JR, Ghezzi LF, Vallejo G, Piantanida JJ, Araujo JL, Sojo ET (2005) Improved long-term allograft function in pediatric renal transplantation with mycophenolate mofetil. Pediatr Transplant 9(2):178–182PubMedCrossRefGoogle Scholar
  40. Filler G, Mai I (2000) Limited sampling strategy for mycophenolic acid area under the curve. Ther Drug Monit 22(2):169–173PubMedCrossRefGoogle Scholar
  41. Focosi D, Maggi F, Pistello M, Boggi U, Scatena F (2011) Immunosuppressive monoclonal antibodies: current and next generation. Clin Microbiol Infect 17(12):1759–1768PubMedCrossRefGoogle Scholar
  42. Friend PJ (2013) Alemtuzumab induction therapy in solid organ transplantation. Transplant Res 2(Suppl 1):S5.-1440-2-S1-S5. Epub 2013 Nov 20Google Scholar
  43. Ganschow R, Pape L, Sturm E et al (2013) Growing experience with mTOR inhibitors in pediatric solid organ transplantation. Pediatr Transplant 17(7):694–706PubMedGoogle Scholar
  44. Ganschow R, Pollok JM, Jankofsky M, Junge G (2014) The role of everolimus in liver transplantation. Clin Exp Gastroenterol 7:329–343PubMedPubMedCentralCrossRefGoogle Scholar
  45. Gaston RS (2006) Current and evolving immunosuppressive regimens in kidney transplantation. Am J Kidney Dis 47(4 Suppl 2):S3–21PubMedCrossRefGoogle Scholar
  46. Gibelli NE, Tannuri U, Pinho-Apezzato ML et al (2009) Sirolimus in pediatric liver transplantation: a single-center experience. Transplant Proc 41(3):901–903PubMedCrossRefGoogle Scholar
  47. Goldberg JF, Jeewa A, Dreyer WJ et al (2014) Postoperative complications associated with perioperative sirolimus prior to pediatric cardiac retransplantation. J Pediatr Pharmacol Ther 19(1):30–34PubMedPubMedCentralGoogle Scholar
  48. Grushkin C, Mahan JD, Mange KC, Hexham JM, Ettenger R (2013) De novo therapy with everolimus and reduced-exposure cyclosporine following pediatric kidney transplantation: a prospective, multicenter, 12-month study. Pediatr Transplant 17(3):237–243PubMedCrossRefGoogle Scholar
  49. Halloran PF (2004) Immunosuppressive drugs for kidney transplantation. N Engl J Med 351(26):2715–2729PubMedCrossRefGoogle Scholar
  50. Hanaway MJ, Woodle ES, Mulgaonkar S et al (2011) Alemtuzumab induction in renal transplantation. N Engl J Med 364(20):1909–1919PubMedCrossRefGoogle Scholar
  51. Hardinger KL, Sunderland D, Wiederrich JA (2016) Belatacept for the prophylaxis of organ rejection in kidney transplant patients: an evidence-based review of its place in therapy. Int J Nephrol Renovasc Dis 9:139–150PubMedPubMedCentralCrossRefGoogle Scholar
  52. Harmon W, Meyers K, Ingelfinger J et al (2006) Safety and efficacy of a calcineurin inhibitor avoidance regimen in pediatric renal transplantation. J Am Soc Nephrol 17(6):1735–1745PubMedCrossRefGoogle Scholar
  53. Hart A, Smith JM, Skeans MA et al (2017) OPTN/SRTR 2015 annual data report: kidney. Am J Transplant 17:21–116PubMedPubMedCentralCrossRefGoogle Scholar
  54. Heffron TG, Pescovitz MD, Florman S et al (2007) Once-daily tacrolimus extended-release formulation: 1-year post-conversion in stable pediatric liver transplant recipients. Am J Transplant 7(6):1609–1615PubMedCrossRefGoogle Scholar
  55. Hines RN (2008) The ontogeny of drug metabolism enzymes and implications for adverse drug events. Pharmacol Ther 118(2):250–267PubMedCrossRefGoogle Scholar
  56. Hocker B, Weber LT, Bunchman T, Rashford M, Tonshoff B, Tricontinental MMF (2005) Suspension study group. Mycophenolate mofetil suspension in pediatric renal transplantation: three-year data from the tricontinental trial. Pediatr Transplant 9(4):504–511PubMedCrossRefGoogle Scholar
  57. Hocker B, Feneberg R, Kopf S et al (2006) SRL-based immunosuppression vs. CNI minimization in pediatric renal transplant recipients with chronic CNI nephrotoxicity. Pediatr Transplant 10(5):593–601PubMedCrossRefGoogle Scholar
  58. Hocker B, van Gelder T, Martin-Govantes J et al (2011) Comparison of MMF efficacy and safety in paediatric vs. adult renal transplantation: subgroup analysis of the randomised, multicentre FDCC trial. Nephrol Dial Transplant 26(3):1073–1079PubMedCrossRefGoogle Scholar
  59. Hoyer PF et al (1996) Conversion from Sandimmune to Neoral and induction therapy with Neoral in pediatric renal transplant recipients. Transplant Proc 28(4):2259–2261PubMedGoogle Scholar
  60. Hoyer PF, Ettenger R, Kovarik JM et al (2003) Everolimus in pediatric de nova renal transplant patients. Transplantation 75(12):2082–2085PubMedCrossRefGoogle Scholar
  61. Ibrahim RB, Liu C, Cronin SM et al (2007) Drug removal by plasmapheresis: an evidence-based review. Pharmacotherapy 27(11):1529–1549PubMedCrossRefGoogle Scholar
  62. Jimenez-Rivera C, Avitzur Y, Fecteau AH, Jones N, Grant D, Ng VL (2004) Sirolimus for pediatric liver transplant recipients with post-transplant lymphoproliferative disease and hepatoblastoma. Pediatr Transplant 8(3):243–248PubMedCrossRefGoogle Scholar
  63. Jungraithmayr T, Staskewitz A, Kirste G et al (2003) Pediatric renal transplantation with mycophenolate mofetil-based immunosuppression without induction: results after three years. Transplantation 75(4):454–461PubMedCrossRefGoogle Scholar
  64. Jungraithmayr TC, Wiesmayr S, Staskewitz A et al (2007) Five-year outcome in pediatric patients with mycophenolate mofetil-based renal transplantation. Transplantation 83(7):900–905PubMedCrossRefGoogle Scholar
  65. Kaabak MM, Babenko NN, Samsonov DV, Sandrikov VA, Maschan AA, Zokoev AK (2013) Alemtuzumab induction in pediatric kidney transplantation. Pediatr Transplant 17(2):168–178PubMedPubMedCentralCrossRefGoogle Scholar
  66. Kamel M, Kadian M, Srinivas T, Taber D, Posadas Salas MA (2016) Tacrolimus confers lower acute rejection rates and better renal allograft survival compared to cyclosporine. World J Transplant 6(4):697–702PubMedPubMedCentralCrossRefGoogle Scholar
  67. Kidney Disease: Improving Global Outcomes (KDIGO) Transplant Work Group (2009) KDIGO clinical practice guideline for the care of kidney transplant recipients. Am J Transplant 9(Suppl 3):S1–155Google Scholar
  68. Kim IK, Choi J, Vo AA, et al (2017) Safety and efficacy of alemtuzumab induction in highly sensitized pediatric renal transplant recipients. Transplantation 101; 883–809PubMedCrossRefGoogle Scholar
  69. Kim WR, Lake JR, Smith JM et al (2017) OPTN/SRTR 2015 annual data report: liver. Am J Transplant 17:174–251PubMedCrossRefGoogle Scholar
  70. Kirchner GI, Meier-Wiedenbach I, Manns MP (2004) Clinical pharmacokinetics of everolimus. Clin Pharmacokinet 43(2):83–95PubMedCrossRefGoogle Scholar
  71. Kizilbash S, Claes D, Ashoor I, et al (2017) Bortezomib in the treatment of antibody-mediated rejection in pediatric kidney transplant recipients: a multicenter midwest pediatric nephrology consortium study. Pediatr Transplant 21(3):1–8CrossRefGoogle Scholar
  72. Kovarik JM, Curtis JJ, Hricik DE, Pescovitz MD, Scantlebury V, Vasquez A (2006) Differential pharmacokinetic interaction of tacrolimus and cyclosporine on everolimus. Transplant Proc 38(10):3456–3458PubMedCrossRefGoogle Scholar
  73. Krischock L, Marks SD (2010) Induction therapy: why, when, and which agent? Pediatr Transplant 14(3):298–313PubMedCrossRefGoogle Scholar
  74. Kuypers DR, Le Meur Y, Cantarovich M et al (2010) Consensus report on therapeutic drug monitoring of mycophenolic acid in solid organ transplantation. Clin J Am Soc Nephrol 5(2):341–358PubMedCrossRefGoogle Scholar
  75. Leape LL, Bates DW, Cullen DJ et al (1995) Systems analysis of adverse drug events. ADE prevention study group. JAMA 274(1):35–43PubMedCrossRefGoogle Scholar
  76. Lerch C, Kanzelmeyer NK, Ahlenstiel-Grunow T et al (2017) Belatacept after kidney transplantation in adolescents: a retrospective study. Transpl Int 30(1): 494–501PubMedCrossRefGoogle Scholar
  77. Levine MH, Abt PL (2012) Treatment options and strategies for antibody mediated rejection after renal transplantation. Semin Immunol 24(2):136–142PubMedCrossRefGoogle Scholar
  78. Loar RW, Driscoll DJ, Kushwaha SS et al (2013) Empiric switch from calcineurin inhibitor to sirolimus-based immunosuppression in pediatric heart transplantation recipients. Pediatr Transplant 17(8):794–799PubMedCrossRefGoogle Scholar
  79. Lobach NE, Pollock-Barziv SM, West LJ, Dipchand AI (2005) Sirolimus immunosuppression in pediatric heart transplant recipients: a single-center experience. J Heart Lung Transplant 24(2):184–189PubMedCrossRefGoogle Scholar
  80. Magliocca JF, Knechtle SJ (2006) The evolving role of alemtuzumab (campath-1H) for immunosuppressive therapy in organ transplantation. Transpl Int 19(9):705–714PubMedCrossRefGoogle Scholar
  81. Mahalati K, Kahan BD (2001) Clinical pharmacokinetics of sirolimus. Clin Pharmacokinet 40(8):573–585PubMedCrossRefGoogle Scholar
  82. Manitpisitkul W, McCann E, Lee S, Weir MR (2009) Drug interactions in transplant patients: what everyone should know. Curr Opin Nephrol Hypertens 18(5):404–411PubMedCrossRefGoogle Scholar
  83. Matalova P, Urbanek K, Anzenbacher P (2016) Specific features of pharmacokinetics in children. Drug Metab Rev 48(1):70–79PubMedCrossRefGoogle Scholar
  84. Matthews K, Gossett J, Kappelle PV, Jellen G, Pahl E (2010) Indications, tolerance and complications of a sirolimus and calcineurin inhibitor immunosuppression regimen: intermediate experience in pediatric heart transplantation recipients. Pediatr Transplant 14(3):402–408PubMedCrossRefGoogle Scholar
  85. McDonald RA, Smith JM, Ho M et al (2008) Incidence of PTLD in pediatric renal transplant recipients receiving basiliximab, calcineurin inhibitor, sirolimus and steroids. Am J Transplant 8(5):984–989PubMedCrossRefGoogle Scholar
  86. McLeod HL, Siva C (2002) The thiopurine S-methyltransferase gene locus – implications for clinical pharmacogenomics. Pharmacogenomics 3(1):89–98PubMedCrossRefGoogle Scholar
  87. Medeiros M et al (1999) Limited sampling model for area-under-the-curve monitoring in pediatric patients receiving either Sandimmune or Neoral cyclosporin A oral formulations. Pediatr Transplant 3(3):225–230PubMedCrossRefGoogle Scholar
  88. Mehrabi A, Mood Z, Sadeghi M et al (2007) Thymoglobulin and ischemia reperfusion injury in kidney and liver transplantation. Nephrol Dial Transplant 22(Suppl 8):viii54–viii60PubMedGoogle Scholar
  89. Miloh T, Barton A, Wheeler J et al (2017) Immunosuppression in pediatric liver transplant recipients: Unique aspects. Liver Transpl 23(2):244–256PubMedCrossRefGoogle Scholar
  90. Monaco AP (1989) Immunosuppression and tolerance for clinical organ allografts. Curr Opin Immunol 1(6):1174–1177PubMedCrossRefGoogle Scholar
  91. Morrow WR, Frazier EA, Mahle WT et al (2012) Rapid reduction in donor-specific anti-human leukocyte antigen antibodies and reversal of antibody-mediated rejection with bortezomib in pediatric heart transplant patients. Transplantation 93(3):319–324PubMedPubMedCentralCrossRefGoogle Scholar
  92. Naesens M, Berger S, Biancone L et al (2016) Lymphocyte-depleting induction and steroid minimization after kidney transplantation: a review. Nefrologia 36(5):469–480PubMedCrossRefGoogle Scholar
  93. Nielsen D, Briem-Richter A, Sornsakrin M, Fischer L, Nashan B, Ganschow R (2011) The use of everolimus in pediatric liver transplant recipients: first experience in a single center. Pediatr Transplant 15(5):510–514PubMedCrossRefGoogle Scholar
  94. Noureldeen T, Albekioni Z, Machado L et al (2014) Alemtuzumab induction and antibody-mediated rejection in kidney transplantation. Transplant Proc 46(10):3405–3407PubMedCrossRefGoogle Scholar
  95. Nulojix® [Package Insert] [webpage on the Internet], ed. Highlights of prescribing information. Bristol-Myers Squibb Company, Princeton (2016)Google Scholar
  96. O’Leary JG, Samaniego M, Barrio MC et al (2016) The influence of immunosuppressive agents on the risk of de novo donor-specific HLA antibody production in solid organ transplant recipients. Transplantation 100(1):39–53PubMedCrossRefGoogle Scholar
  97. Palleria C, Di Paolo A, Giofre C et al (2013) Pharmacokinetic drug-drug interaction and their implication in clinical management. J Res Med Sci 18(7):601–610PubMedPubMedCentralGoogle Scholar
  98. Pape L, Offner G, Kreuzer M et al (2010) De novo therapy with everolimus, low-dose ciclosporine A, basiliximab and steroid elimination in pediatric kidney transplantation. Am J Transplant 10(10):2349–2354PubMedCrossRefGoogle Scholar
  99. Pape L, Heidotting N, Ahlenstiel T (2011a) Once-daily tacrolimus extended-release formulation: 1 year after conversion in stable pediatric kidney transplant recipients. Int J Nephrol 2011:126251PubMedPubMedCentralCrossRefGoogle Scholar
  100. Pape L, Lehner F, Blume C, Ahlenstiel T (2011b) Pediatric kidney transplantation followed by de novo therapy with everolimus, low-dose cyclosporine A, and steroid elimination: 3-year data. Transplantation 92(6):658–662PubMedCrossRefGoogle Scholar
  101. Park SI, Felipe CR, Pinheiro-Machado PG, Garcia R, Tedesco-Silva H Jr, Medina-Pestana JO (2007) Circadian and time-dependent variability in tacrolimus pharmacokinetics. Fundam Clin Pharmacol 21(2):191–197PubMedCrossRefGoogle Scholar
  102. Pescovitz MD et al (2008) Safety and pharmacokinetics of daclizumab in pediatric renal transplant recipients. Pediatr Transplant 12(4):447–455PubMedCrossRefGoogle Scholar
  103. Rapamune® (Package Insert) [webpage on the internet], ed. Highlights of prescribing information. Pfizer, Philadelphia (2016)Google Scholar
  104. Rhen T, Cidlowski JA (2005) Antiinflammatory action of glucocorticoids – new mechanisms for old drugs. N Engl J Med 353(16):1711–1723PubMedCrossRefGoogle Scholar
  105. Rossano JW, Jefferies JL, Pahl E et al (2016) Use of sirolimus in pediatric heart transplant patients: a multi-institutional study from the pediatric heart transplant study group. J Heart Lung TransplantGoogle Scholar
  106. Ruan V, Czer LS, Awad M et al (2017) Use of anti-thymocyte globulin for induction therapy in cardiac transplantation: a review. Transplant Proc 49(2):253–259PubMedCrossRefGoogle Scholar
  107. Sage DP, Kulczar C, Roth W, Liu W, Knipp GT (2014) Persistent pharmacokinetic challenges to pediatric drug development. Front Genet 5:281PubMedPubMedCentralCrossRefGoogle Scholar
  108. Sam T, Gabardi S, Tichy EM (2013) Risk evaluation and mitigation strategies: a focus on belatacept. Prog Transplant 23(1):64–70PubMedCrossRefGoogle Scholar
  109. van Sandwijk MS, Bemelman FJ, Ten Berge IJ (2013) Immunosuppressive drugs after solid organ transplantation. Neth J Med 71(6):281–289PubMedGoogle Scholar
  110. Sarwal MM et al (2012) Complete steroid avoidance is effective and safe in children with renal transplants: a multicenter randomized trial with three-year follow-up. Am J Transplant 12(10):2719–2729PubMedPubMedCentralCrossRefGoogle Scholar
  111. Schena FP, Pascoe MD, Alberu J et al (2009) Conversion from calcineurin inhibitors to sirolimus maintenance therapy in renal allograft recipients: 24-month efficacy and safety results from the CONVERT trial. Transplantation 87(2):233–242PubMedCrossRefGoogle Scholar
  112. Sciarretta S, Volpe M, Sadoshima J (2014) Mammalian target of rapamycin signaling in cardiac physiology and disease. Circ Res 114(3):549–564PubMedPubMedCentralCrossRefGoogle Scholar
  113. Shah S, Verma P (2016) Overview of pregnancy in renal transplant patients. Int J Nephrol 2016:4539342PubMedPubMedCentralCrossRefGoogle Scholar
  114. Smith JM, Skeans MA, Horslen SP et al (2017) OPTN/SRTR 2015 annual data report: intestine. Am J Transplant 17:252–285PubMedCrossRefGoogle Scholar
  115. Solu-MedrolL®[Package Insert] (webpage on the internet), ed. SOLU-MEDROL® (methylprednisolone sodium succinate for injection, USP). Pfizer, New York (2011)Google Scholar
  116. Staskewitz A, Kirste G, Tonshoff B et al (2001) Mycophenolate mofetil in pediatric renal transplantation without induction therapy: results after 12 months of treatment. German pediatric renal transplantation study group. Transplantation 71(5):638–644PubMedCrossRefGoogle Scholar
  117. Sung J, Barry JM, Jenkins R et al (2013) Alemtuzumab induction with tacrolimus monotherapy in 25 pediatric renal transplant recipients. Pediatr Transplant 17(8):718–725PubMedCrossRefGoogle Scholar
  118. Supe-Markovina K, Melquist JJ, Connolly D et al (2014) Alemtuzumab with corticosteroid minimization for pediatric deceased donor renal transplantation: a seven-yr experience. Pediatr Transplant 18(4):363–368PubMedCrossRefGoogle Scholar
  119. Tacrolimus Prograf® (Package Insert) [webpage on the internet], ed. Highlights of prescribing information. Astellas Pharma US, Inc, Northbrook (2015)Google Scholar
  120. Thymoglobulin® [Package Insert] [webpage on the internet], ed. Highlights of prescribing information. Genzyme Corporation, Cambridge MA (2017)Google Scholar
  121. Tsampalieros A, Knoll GA, Molnar AO, Fergusson N, Fergusson DA (2016) Corticosteroid use and growth after pediatric solid organ transplantation: a systematic review and meta-analysis. TransplantationGoogle Scholar
  122. Turner AP, Knechtle SJ (2013) Induction immunosuppression in liver transplantation: a review. Transpl Int 26(7):673–683PubMedCrossRefGoogle Scholar
  123. Valapour M, Skeans MA, Smith JM et al (2017) OPTN/SRTR 2015 annual data report: lung. Am J Transplant 17:357–424PubMedCrossRefGoogle Scholar
  124. Vethe NT, Midtvedt K, Asberg A, Amundsen R, Bergan S (2011) Drug interactions and immunosuppression in organ transplant recipients. Tidsskr Nor Laegeforen 131(20):2000–2003PubMedCrossRefGoogle Scholar
  125. Vlachopanos G, Bridson JM, Sharma A, Halawa A (2016) Corticosteroid minimization in renal transplantation: careful patient selection enables feasibility. World J Transplant 6(4):759–766PubMedPubMedCentralCrossRefGoogle Scholar
  126. Weber LT, Shipkova M, Armstrong VW et al (2002) Comparison of the emit immunoassay with HPLC for therapeutic drug monitoring of mycophenolic acid in pediatric renal-transplant recipients on mycophenolate mofetil therapy. Clin Chem 48(3):517–525PubMedGoogle Scholar
  127. Weber LT, Hoecker B, Armstrong VW, Oellerich M, Tonshoff B (2008) Long-term pharmacokinetics of mycophenolic acid in pediatric renal transplant recipients over 3 years posttransplant. Ther Drug Monit 30(5):570–575PubMedCrossRefGoogle Scholar
  128. Webster A, Woodroffe RC, Taylor RS, Chapman JR, Craig JC (2005) Tacrolimus versus cyclosporin as primary immunosuppression for kidney transplant recipients. Cochrane Datab Syst Rev 4(4):CD003961Google Scholar
  129. Zinn MD, L’Ecuyer TJ, Fagoaga OR, Aggarwal S (2014) Bortezomib use in a pediatric cardiac transplant center. Pediatr Transplant 18(5):469–476PubMedCrossRefGoogle Scholar
  130. Zortress® (Package Insert) [webpage on the internet], ed. Highlights of prescribing information. Novartis Pharmaceuticals Corporation, East Hanover (2016)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Seattle Children’s HospitalSeattleUSA

Section editors and affiliations

  • Tetsu Uejima
    • 1
  1. 1.Nemours/Alfred I. duPont Hospital for ChildrenWilmingtonUSA

Personalised recommendations