Skip to main content

Causes of Early Kidney Allograft Nonfunction

  • Reference work entry
  • First Online:
Solid Organ Transplantation in Infants and Children

Part of the book series: Organ and Tissue Transplantation ((OTT))

  • 808 Accesses

Abstract

Early allograft non-function can be divided into immediate posttransplant period (days 0–7) and early posttransplant period (weeks 1–12). Immediate non-function is most commonly related to delayed graft function and is usually seen in deceased donor kidneys with longer cold ischemic time. Also, during this first week, surgical complications are more common and can include both vascular thrombosis and urologic obstruction. After that first week, during the early period, there is a greater variety of etiologies for non-function that include acute rejection, recurrence of primary disease, drug toxicity, and urological leaks. Delayed graft function can extend beyond the first week, and in this scenario, an allograft biopsy should be done since acute rejection is hard to diagnose in this situation. During these early periods, kidney non-function is more commonly associated with delayed graft function because in the current era of more aggressive immunosuppression protocols, the incidence of acute rejection is low.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ATN:

Acute tubular necrosis

BKV:

BK virus

CAKUT:

Congenital anomalies of the kidneys and urinary tract

CMV:

Cytomegalovirus

CNIs:

Calcineurin inhibitors

DFG:

Delayed graft function

ESRD:

End-stage renal disease

FSGS:

Focal segmental glomerulosclerosis

HLA:

Human leukocyte antigen

HUS:

Hemolytic uremic syndrome

PCR:

Polymerase chain reaction

UTI:

Urinary tract infection

References

  • Balaz P, Rokosny S, Wohlfahrtova M et al (2013) Identification of expanded-criteria donor kidney grafts at lower risk for delayed graft function. Transplantation 96:633–638

    Article  CAS  PubMed  Google Scholar 

  • Butala NM, Reese PP, Doshi MD et al (2013) Is delayed graft function causally associated with long-term outcomes after kidney transplantation? Instrumental variable analysis 1. Transplantation 95:1008–1014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cochat P, Fargue S, Mestrallet G et al (2009) Disease recurrence in paediatric renal transplantation. Pediatr Nephrol 24:2097–2108

    Article  PubMed  PubMed Central  Google Scholar 

  • Cosio FG, Cattran DC (2017) Recent advances in our understanding of recurrent primary glomerulonephritis after kidney transplantation. Kidney Int 91:304–314

    Article  PubMed  Google Scholar 

  • Cravedi P, Codreanu I, Satta A et al (2005) Cyclosporine prolongs delayed graft function in kidney transplantation: are rabbit anti-human thymocyte globulins the answer? Nephron Clin Pract 101:c65–c71

    Article  CAS  PubMed  Google Scholar 

  • Damman J, Bloks VW, Daha MR et al (2015) Hypoxia and complement-and –coagulation pathways in the deceased organ donor as the major target for intervention to improve renal allograft outcome. Transplantation 99:1293–1300

    Article  CAS  PubMed  Google Scholar 

  • Debout A, Foucher Y, Trébern-Launay K et al (2015) Each additional hour of cold ischemia time significantly increases the risk of graft failure and mortality following renal transplantation. Kidney Int 87:343–349

    Article  PubMed  Google Scholar 

  • Dharnidharka VR, Araya CE (2016) Complications of pediatric renal transplantation. In: Aver ED, Harmon WE, Niaudet P, Yoshikawa N, Emma F, Goldstein SL (eds) Pediatric nephrology, 7th edn. Springer, Berlin/Heidelburg, pp 2575–2579

    Google Scholar 

  • Dharnidharka VR, Agodoa LY, Abbott KC (2007) Effects of urinary tract infection on outcomes after renal transplantation in children. Clin J Am Soc Nephrol 2:100–106

    Article  PubMed  Google Scholar 

  • Dharnidharka VR, Fiorina P, Harmon WE (2014) Kidney transplantation in children. N Engl J Med 371:549–558

    Article  CAS  PubMed  Google Scholar 

  • Djamali A, Kaufman DB, Ellis TM et al (2014) Diagnosis and management of antibody-mediated rejection: current status and novel approaches. Am J Transplant 14:255–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doshi MD, Garg N, Reese PP et al (2011) Recipient risk factors associated with delayed graft function: a paired kidney analysis. Transplantation 91:666–671

    Article  PubMed  Google Scholar 

  • Esezobor CI, Nourse P, Gajjar P (2012) Urinary tract infection following kidney transplantation: frequency, risk factors and graft function. Pediatr Nephrol 27:651–657

    Article  PubMed  Google Scholar 

  • Fine RN (2007) Recurrence of nephrotic syndrome/focal segmental glomerulosclerosis following renal transplantation in children. Pediatr Nephrol 22:496–502

    Article  PubMed  Google Scholar 

  • Fishman JA (2013) Infections in kidney transplant recipients. In: Morris PJ, Knechtle SJ (eds) Transplantation: principles and practice, 7th edn. Saunders of Elsevier, Philadelphia, pp 494–497

    Google Scholar 

  • Gaber AO, First MR, Tesi RJ et al (1998) Results of the double-blind, randomized, multicenter, phase III clinical trial of thymoglobulin versus ATGAM in the treatment of acute graft rejection episodes after renal transplantation. Transplantation 66:29–37

    Article  CAS  PubMed  Google Scholar 

  • Gill J, Dong J, Eng M et al (2014) Pulsatile perfusion reduces the risk of delayed graft function in deceased donor kidney transplants, irrespective of donor type or cold ischemic time. Transplantation 97:668–674

    PubMed  Google Scholar 

  • Hanaway MJ, Woodle ES, Mulgaonkar S et al (2011) Alemtuzumab induction in renal transplantation. N Engl J Med 364:1909–1919

    Article  CAS  PubMed  Google Scholar 

  • Hass M (2016) The revised (2013) Banff classification for antibody-mediated rejection of renal allographs: update, difficulties and future considerations. Am J Transplant 16:1352–1357

    Article  Google Scholar 

  • Kranz B, Vester U, Nadalin S et al (2006) Outcome after kidney transplantation in children with thrombotic risk factors. Pediatr Transplantation 10:788–793

    Article  Google Scholar 

  • Loirat C, Niaudet P (2003) The risk of recurrence of hemolytic uremic syndrome after renal transplantation in children. Pediatr Nephrol 18:1095–1101

    Article  PubMed  Google Scholar 

  • Matas AJ, Smith JM, Skeans MA et al (2014) OPTN/SRTR 2012 annual data report: kidney. Am J Transplant 14(Suppl 1):11–44

    Article  PubMed  Google Scholar 

  • McDonald RA, SmithJM SD et al (2003) Pretransplant peritoneal dialysis and graft thrombosis following pediatric kidney transplantation: a NAPRTCS report. Pediatr Transplant 7:204–208

    Article  PubMed  Google Scholar 

  • McEnery PT, Stablein DM, Arbus G et al (1992) Renal transplantation in children: a report of the north American pediatric renal transplant cooperative study. N Engl J Med 326:1727–1732

    Article  CAS  PubMed  Google Scholar 

  • Mejia JC, Basu A, Shapiro R (2013) Calcineurin Inhibitors. In: Morris PJ, Knechtle SJ (eds) Transplantation: principles and practice, 7th edn. Saunders of Elsevier, Philadelphia, p 233

    Google Scholar 

  • Moers C, Smits JM, Maathuis M-H J et al (2009) Machine perfusion or cold storage in deceased-donor kidney transplantation. N Engl J Med 360:7–19

    Article  CAS  PubMed  Google Scholar 

  • Montgomery RA, Hardy MA, Jordan SC et al (2004) Consensus opinion from the antibody working group on the diagnosis, reporting and risk assessment for antibody- mediated rejection and desensitization protocols. Transplantation 78:181–185

    Article  CAS  PubMed  Google Scholar 

  • Nguyen M-T JP, Fryml E, Sahakian SK et al (2014) Pretransplant recipient regulatory T cell suppressive function predicts delayed and slow graft function after kidney transplantation. Transplantation 98:745–753

    Article  PubMed  Google Scholar 

  • Niemann CU, Feiner J, Swain S et al (2015) Therapeutic hypothermia in deceased organ donors and kidney-graft function. N Engl J Med 373:405–414

    Article  CAS  PubMed  Google Scholar 

  • O’Callaghan JM, Knight SR, Morgan RD et al (2012) Preservation solutions for static cold storage of kidney allografts: a systematic review and meta-analysis. Am J Transplant 12:896–906

    Article  PubMed  Google Scholar 

  • Opelz G, Döhler B (2008) Influence of time of rejection on long-term graft survival in renal transplantation. Transplantation 85:661–666

    Article  PubMed  Google Scholar 

  • Patel MS, Zatarain J, De La Cruz S et al (2014) The impact of meeting donor management goals on the number of organs transplanted per expanded criteria donor: a prospected study from UNOS region 5 donor management goals workgroup. JAMA Surg 149:969–975

    Article  PubMed  Google Scholar 

  • Saidi RF, Elias N, Kawai T et al (2007) Outcome of kidney transplantation using expanded criteria donors and donation after cardiac death kidneys: realities and costs. Am J Transplant 7:2769–2774

    Article  CAS  PubMed  Google Scholar 

  • Salmela KT, von Willebrand EO, Kyllönen LEJ et al (1992) Acute vascular rejection in renal transplantation – diagnosis and outcome. Transplantation 54:858–862

    Article  CAS  PubMed  Google Scholar 

  • Salvatierra O Jr, Millan M, Concepcion W (2006) Pediatric renal transplantation with considerations for successful outcomes. Semin Pediatr Surg 15:208–217

    Article  PubMed  Google Scholar 

  • Schold JD, Srinivas TR, Braun WE et al (2011) The relative risk of overall graft loss and acute rejection among African Americans renal transplant recipients is attenuated with advancing age. Clin Transpl 25:721–730

    Article  Google Scholar 

  • Schnuelle P, Schmitt WH, Weiss C et al (2017) Effects of dopamine donor pretreatment on graft survival after kidney transplantation: a randomized trial. Clin J Am Soc Nephrol 12:493–501

    Article  PubMed  PubMed Central  Google Scholar 

  • Senggutuvan P, Cameron JS, Hartley RB et al (1990) Recurrence of focal segmental glomerulosclerosis in transplanted kidneys: analysis of incidence and risk factors in 59 allografts. Pediatr Nephrol 4:21–28

    Article  CAS  PubMed  Google Scholar 

  • Shinn C, Malhotra D, Chan L et al (1999) Time course of response to pulse methylprenisolone therapy in renal transplant recipients with acute allograft rejection. Am J Kidney Dis 34:304–307

    Article  CAS  PubMed  Google Scholar 

  • Siedlecki A, Irish W, Brennan DC (2011) Delayed graft function in the kidney transplant. Am J Transplant 11:2279–2296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Solez K, Axelsen RA, Benediktsson H et al (1993) International standardization of criteria for the histologic diagnosis of renal allograft rejection: the Banff working classification of kidney transplant pathology. Kidney Int 44:411–422

    Article  CAS  PubMed  Google Scholar 

  • Vacher-Coponat H, McDonald S, Clayton P et al (2013) Inferior early posttransplant outcomes for recipients of right versus left deceased donor kidneys: an ANZDATA registry analysis. Am J Transplant 13:399–405

    Article  CAS  PubMed  Google Scholar 

  • Weber S, Tönshoff B (2005) Recurrence of focal-segmental glomerulosclerosis in children after renal transplantation: clinical and genetic aspects. Transplantation 80:S128–S134

    Article  PubMed  Google Scholar 

  • Weissenbacher A, Jara M, Ulmer H et al (2012) Recipient and donor body mass index as important risk factors for delayed kidney graft function. Transplantation 93:524–529

    Article  PubMed  Google Scholar 

  • Wu K, Budde K, Schmidt D et al (2015) The relationship of the severity and category of acute rejection with intimal artery arteritis defined in Banff classification to clinical outcomes. Transplantation 99:e105–e114

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin D. McBryde .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

McBryde, K.D., Kaiser, B.A. (2018). Causes of Early Kidney Allograft Nonfunction. In: Dunn, S., Horslen, S. (eds) Solid Organ Transplantation in Infants and Children. Organ and Tissue Transplantation. Springer, Cham. https://doi.org/10.1007/978-3-319-07284-5_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07284-5_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07283-8

  • Online ISBN: 978-3-319-07284-5

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics