Immunosuppression: Induction, Maintenance, and Steroid Avoidance Protocols

  • Bruce A. Kaiser
  • Martin S. Polinsky
Reference work entry
Part of the Organ and Tissue Transplantation book series (OTT)


During the past 50 years, kidney transplantation has become an increasingly successful form of renal replacement therapy, as demonstrated, in particular, by the dramatic improvements in 1-year patient and allograft survival rates. These have improved to over 90% for both deceased and living donor allografts, and acute rejection rates have decreased to approximately 10% at 1 year. To a great extent, this improvement correlates with the availability of a greater number of more effective immunosuppressive medications and, for selected drugs, the availability of therapeutic drug monitoring. Currently nearly two-thirds of all recipients receive some form of induction therapy at the time of transplantation and then remain on a maintenance regimen of two or three medications. The combinations of drugs that are currently available can be adjusted to allow the therapy to be individualized between patients to deliver adequate immunosuppression while minimizing side effects and maximizing both patient and graft survival.


Kidney transplantation Allograft survival Acute rejection Pediatric Immunosuppressive medications Induction therapy Maintenance therapy Calcineurin inhibitor Interleukin-2 receptor antagonist Antithymocyte globulin Alemtuzumab Azathioprine Mycophenolate mofetil Rapamycin Belatacept 



Antigen-presenting cell


Antithymocyte globulin






Calcineurin inhibitors




Cyclosporine A


Donor-specific antibodies


Epstein-Barr virus


Estimated or calculated glomerular filtration rate




Major histocompatibility complex antigens


Interleukin-2 receptor antagonist


Kidney disease improving global outcome


Measured glomerular filtration rate


Mycophenolate mofetil


Mammalian target of rapamycin


Mammalian target of rapamycin inhibitor


Panel reactive antibodies


Posttransplant lymphoproliferative disorder


Rabbit ATG (antithymocyte globulin), thymoglobulin






T-cell receptor complex


  1. Barletta G-M, Kirk E, Gardner JJ et al (2009) Rapid discontinuation of corticosteroids in pediatric renal transplantation. Pediatr Transplant 13:571–578CrossRefPubMedGoogle Scholar
  2. Benfield MR, Bartosh S, Ikle D et al (2010) A randomized double-blind, placebo controlled trial of steroid withdrawal after pediatric renal transplantation. Am J Transplant 10:81–89CrossRefPubMedGoogle Scholar
  3. Birkeland SA (2001) Steroid-free immunosuppression in renal transplantation. Transplantation 71:1089–1090CrossRefPubMedGoogle Scholar
  4. Bolin P, Tanriover B, Zibari GB et al (2007) Improvement in 3-month patient-reported gastrointestinal symptoms after conversion from mycophenolate mofetil to enteric-coated mycophenolate sodium in renal transplant patients. Transplantation 84:1443–1451CrossRefPubMedGoogle Scholar
  5. Brennan DC, Schritzler MA (2008) Long-term results of rabbit antithymocyte globulin and basiliximab induction. N Engl J Med 359:1736–1738CrossRefPubMedGoogle Scholar
  6. Brennan DC, Daller JA, Lake KD et al (2006) Rabbit antithymocyte globulin versus basiliximab in renal transplantation. N Engl J Med 355:1967–1977CrossRefPubMedGoogle Scholar
  7. Brokhof MM, Sollinger HW, Hager DR et al (2014) Antithymocyte globulin is associated with a lower incidence of de novo donor-specific antibodies in moderately sensitized renal transplant recipients. Transplantation 97:612–617CrossRefPubMedPubMedCentralGoogle Scholar
  8. Budde K, Becker T, Arns W et al (2011) Everolimus-based, calcineurin-inhibitor-free regimen in recipients of de-novo kidney transplants: an open-label, randomized, controlled trial. Lancet 377:837–847CrossRefPubMedGoogle Scholar
  9. Cai J, Terasaki PI (2010) Induction immunosuppression improves long-term graft and patient outcome in organ transplantation: an analysis of united network for organ sharing registry data. Transplantation 90:1511–1515CrossRefPubMedGoogle Scholar
  10. Cantarovich D, Rostaing L, Kamar N et al (2014) Early corticosteroid avoidance in kidney transplant recipients receiving ATG-F induction: 5-year actual results of a prospective and randomized study. Am J Transplant 14:2556–2564CrossRefPubMedGoogle Scholar
  11. Charpentier B, Rostaing L, Berthoux F et al (2003) A three-arm study comparing immediate tacrolimus therapy with antithymocyte globulin induction therapy followed by tacrolimus or cyclosporine A in adult renal transplant recipients. Transplantation 75:844–851CrossRefPubMedGoogle Scholar
  12. Ciancio G, Burke GW, Gaynor JJ et al (2005) A randomized trial of three renal transplant induction antibodies: early comparison of tacrolimus, mycophenolate mofetil and steroid dosing, and newer immune-monitoring. Transplantation 80:457–465CrossRefPubMedGoogle Scholar
  13. Ciancio G, Burke GW, Gaynor JJ et al (2008) A randomized trial of thymoglobulin vs. alemtuzumab (with lower dose maintenance immunosuppression) vs. daclizumab in renal transplantation at 24 months of follow-up. Clin Transplant 22:200–210CrossRefPubMedGoogle Scholar
  14. De Serres SA, Mfarrej BG, Magee CN et al (2012) Immune profile of pediatric renal transplant recipients following alemtuzumab induction. J Am Soc Nephrol 23:174–182CrossRefPubMedGoogle Scholar
  15. Ekberg H, Tedesco-Silva H, Demirbas A et al (2007) Reduced exposure to calcineurin inhibitors in renal transplantation. N Engl J Med 357:2562–2575CrossRefPubMedGoogle Scholar
  16. Ferguson R, Grinyó J, Vincenti F et al (2011) Immunosuppression with belatacept-based, corticosteroid-avoiding regimens in de novo kidney transplant recipients. Am J Transplant 11:66–76CrossRefPubMedGoogle Scholar
  17. Filler G, Webb NJA, Milford DV et al (2005) Four-year data after pediatric renal transplantation: a randomized trial of tacrolimus vs. cyclosporine microemulsion. Pediatr Transplant 9:498–503CrossRefPubMedGoogle Scholar
  18. Flechner SM, Glyda M, Cockfield S et al (2011) The ORION study: comparison of two sirolimus-based regimens versus tacrolimus and mycophenolate mofetil in renal allograft recipients. Am J Transplant 11:1633–1644CrossRefPubMedGoogle Scholar
  19. Franke D, Thomas L, Steffens R et al (2015) Patterns of growth after kidney transplantation among children with ESRD. Clin J Am Soc Nephrol 10:127–134CrossRefPubMedGoogle Scholar
  20. Gaston RS (2001) Maintenance immunosuppression in the renal transplant recipient: an overview. Am J Kidney Dis 38(suppl 6):S25–S35CrossRefPubMedGoogle Scholar
  21. Gaston RS, Kaplan B, Shah T et al (2009) Fixed- or controlled- dose mycophenolate mofetil with standard- or reduced-dose calcineurin inhibitors: the opticept trial. Am J Transplant 9:1607–1619CrossRefPubMedGoogle Scholar
  22. Goggins WC, Pascual MA, Powelson JA et al (2003) A prospective, randomized, clinical trial of intraoperative versus postoperative thymoglobulin in adult cadaveric renal transplant recipients. Transplantation 76:798–802CrossRefPubMedGoogle Scholar
  23. Grenda R, Watson A, Trompeter R et al (2010) A randomized trial to assess the impact of early steroid withdrawal on growth in pediatric renal transplantation: the TWIST study. Am J Transplant 10:828–836CrossRefPubMedGoogle Scholar
  24. Guertin DA, Sabatini DM (2007) Defining the role of mTOR in cancer. Cancer Cell 12:9–22CrossRefPubMedGoogle Scholar
  25. Gurk-Turner C, Airee R, Philosphe B et al (2008) Thymoglobulin dose optimization for induction therapy in high risk kidney transplant recipients. Transplantation 85:1425–1430CrossRefPubMedGoogle Scholar
  26. Gurk-Turner C, Manitpisitkul W, Cooper M (2012) A comprehensive review of everolimus clinical reports: a new mammalian target of rapamycin inhibitor. Transplantation 94:659–668CrossRefPubMedGoogle Scholar
  27. Hanaway MJ, Woodle ES, Mulgaonkar S et al (2011) Alemtuzumab induction in renal transplantation. N Engl J Med 364:1909–1919CrossRefPubMedGoogle Scholar
  28. Hardinger K, Rhee S, Buchanan P et al (2008) A prospective, randomized, double-blinded comparison of thymoglobulin versus Atgam for induction immunosuppressive therapy: 10-year results. Transplantation 86:947–952CrossRefPubMedPubMedCentralGoogle Scholar
  29. Hardinger KL, Brennan DC, Schnitzler MA (2009) Rabbit antithymocyte globulin is more beneficial in standard kidney than in extended donor recipients. Transplantation 87:1372–1376CrossRefPubMedGoogle Scholar
  30. Harmon WE, Sullivan EK (1993) Cyclosporine dosing and its relationship to outcome in pediatric renal transplantation. Kidney Int 44(Suppl 43):S50–S55Google Scholar
  31. Harmon W, Meyers K, Ingelfinger J et al (2006) Safety and efficacy of a calcineurin inhibitor avoidance regimen in pediatric renal transplantation. J Am Soc Nephrol 17:1735–1745CrossRefPubMedGoogle Scholar
  32. Höcker B, Kovarik JM, Daniel V et al (2008) Pharmacokinetics and immunodynamics of basiliximab in pediatric renal transplant recipients on mycophenolate mofetil comedication. Transplantation 86:1234–1240CrossRefPubMedGoogle Scholar
  33. Höcker B, Weber LT, Feneberg R (2009) Prospective, randomized trial on late steroid withdrawal in pediatric renal transplant recipients under cyclosporine microemulsion and mycophenolate mofetil. Transplantation 87:934–941CrossRefPubMedGoogle Scholar
  34. Hymes LC, Warshaw BL, Amaral SG et al (2008) Tacrolimus withdrawal and conversion to sirolimus at three months post-pediatric renal transplantation. Pediatr Transplant 12:773–777CrossRefPubMedGoogle Scholar
  35. Jabs K, Sullivan EK, Avner ED et al (1996) Alternate-day steroid dosing improves growth without adversely affecting graft survival or long-term graft function: a report of the North American Pediatric Renal Transplant Cooperative Study. Transplantation 61:31–36CrossRefPubMedGoogle Scholar
  36. Jungraithmayr TC, Wiesmayr S, Staskewitz A et al (2007) Five-year outcome in pediatric patients with mycophenolate mofetil-based renal transplantation. Transplantation 83:900–905CrossRefPubMedGoogle Scholar
  37. Kasiske BL, Zeier MG, Chapman JR (2010) KDIGO clinical practice guidelines for the care of kidney transplant recipients: a summary. Kidney Int 77:299–311CrossRefPubMedGoogle Scholar
  38. KDIGO (Kidney Disease Improving Global Outcomes) (2009). KDIGO clinical practice guidelines for the care of kidney transplant recipients. Am J Transplant 9(Suppl 3). Induction S6–S9; Maintenance S10–S13Google Scholar
  39. Knight SR, Morris PJ (2007) The clinical benefits of cyclosporine C2-level monitoring: a systematic review. Transplantation 83:1525–1535CrossRefPubMedGoogle Scholar
  40. Kuypers DRJ, Peeters PC, Sennesael JJ et al (2013) Improved adherence to tacrolimus once-daily formulation in renal transplant recipients: a randomized controlled trial using electronic monitoring. Transplantation 95:333–340CrossRefPubMedGoogle Scholar
  41. Lamb KE, Lodhi S, Meier-Kriesche H-U (2011) Long-term renal allograft survival in the United States: a critical reappraisal. Am J Transplant 11:450–462CrossRefPubMedGoogle Scholar
  42. Lau KK, Berg GM, Schjoneman YG et al (2010) Extended experience with a steroid minimization immunosuppression protocol in pediatric renal transplant recipients. Pediatr Transplant 14:488–495CrossRefPubMedGoogle Scholar
  43. Maltzman JS, Koretzky GA (2003) Azathioprine: old drug, new actions. J Clin Invest 111:1122–1124CrossRefPubMedPubMedCentralGoogle Scholar
  44. Matas AJ, Kandaswamy R, Gillingham KJ et al (2005) Prednisone-free maintenance immunosuppression – a 5-year experience. Am J Transplant 5:2473–2478CrossRefPubMedGoogle Scholar
  45. Mathew TH (1998) A blinded, long-term, randomized multicenter study of mycophenolate mofetil in cadaveric renal transplantation: results at three years. Transplantation 65:1450–1454CrossRefPubMedGoogle Scholar
  46. McKay DB, Josephson MA (2008) Pregnancy after kidney transplantation. Clin J Am Soc Nephrol 3:S117–S125CrossRefPubMedPubMedCentralGoogle Scholar
  47. McTaggart RA, Gottlieb D, Brooks J et al (2003) Sirolimus prolongs recovery from delayed graft function after cadaveric renal transplantation. Am J Transplant 3:416–423CrossRefPubMedGoogle Scholar
  48. Mejia JC, Basu A, Shapiro R (2013) Calcineurin inhibitors. In: Morris PJ, Knechtle SJ (eds) Kidney transplantation: principles and practice, vol 7. Saunders of Elsevier, PhiladelphiaGoogle Scholar
  49. Mourad G, Rostaing L, Legendre C et al (2004) Sequential protocols using basiliximab versus anti-thymocyte globulins in renal-transplant patients receiving mycophenolate mofetil and steroids. Transplantation 78:584–590CrossRefPubMedGoogle Scholar
  50. Nankivell BJ, Borrows RJ, Fung CL-S et al (2003) The natural history of chronic allograft nephrology. N Engl J Med 349:2326–2333CrossRefPubMedGoogle Scholar
  51. Neu AM, Ho PL, Fine RN et al (2003) Tacrolimus vs cyclosporine A as primary immunosuppression in pediatric renal transplantation: a NAPRTCS study. Pediatr Transplant 7:217–222CrossRefPubMedGoogle Scholar
  52. Offner G, Toenshoff B, Höcker B et al (2008) Efficacy and safety of basiliximab in pediatric renal transplant patients receiving cyclosporine, mycophenolate mofetil and steroids. Transplantation 86:1241–1248CrossRefPubMedGoogle Scholar
  53. Opelz G, Döhler B, Laux G (2005) Long-term prospective study of steroid withdrawal in kidney and heart transplant recipients. Am J Transplant 5:720–728CrossRefPubMedGoogle Scholar
  54. Organ procurement and transplantation network (OPTN) and scientific registry of transplant recipients (SRTR). OPTN/SRTR 2012 annual data report. Accessed 1 Sept 2015
  55. Pape L, Ahlenstiel T, Ehrich JHH et al (2007) Reversal of loss of glomerular filtration rate in children with transplant nephropathy after switch to everolimus and low-dose cyclosporine A. Pediatr Transplant 11:291–295CrossRefPubMedGoogle Scholar
  56. Pascual J, Galeano C, Royuela A et al (2010) A systematic review of steroid withdrawal between 3 and 6 months after kidney transplantation. Transplantation 90:343–349CrossRefPubMedGoogle Scholar
  57. Remuzzi G, Lesti M, Gotti E et al (2004) Mycophenolate mofetil vs azathioprine for prevention of acute rejection in renal transplantation (MYSS): a randomized trial. Lancet 364:503–512CrossRefPubMedGoogle Scholar
  58. Rhen T, Cidlowski JA (2005) Antiinflammatory action of glucocorticoids – new mechanisms for old drugs. N Engl J Med 353:1711–1723CrossRefPubMedGoogle Scholar
  59. Rizzari MD, Suszynski TM, Gillingham KJ et al (2012) Ten-year outcome after rapid discontinuation of prednisone in adult primary kidney transplantation. Clin J Am Soc Nephrol 7:494–503CrossRefPubMedPubMedCentralGoogle Scholar
  60. Rostaing L, Massari P, Duro Garcia V et al (2011) Switching from calcineurin inhibitor-based regimens to a belatacept-based regimen in renal transplant recipients: a randomized phase II study. Clin J Am Soc Nephrol 6:430–439CrossRefPubMedPubMedCentralGoogle Scholar
  61. Rostaing L, Vincenti F, Grinyó J et al (2013) Long-term belatacept exposure maintains efficacy and safety at 5 years: results from the long-term extension of the BENEFIT study. Am J Transplant 13:2875–2883CrossRefPubMedGoogle Scholar
  62. Sarwal MM, Ettenger RB, Dharnidharka V et al (2012) Complete steroid avoidance is effective and safe in children with renal transplants: a multicenter randomized trial with three-year follow-up. Am J Transplant 12:2719–2729CrossRefPubMedPubMedCentralGoogle Scholar
  63. Sayegh MH, Turka LA (1998) The role of T-cell costimulatory activation pathways in transplant rejection. N Engl J Med 338:1813–1821CrossRefPubMedGoogle Scholar
  64. Schena FP, Pascoe MD, Alberu J et al (2009) Conversion from calcineurin inhibitors to sirolimus maintenance therapy in renal allograft recipients: 24-month efficacy and safety results from the CONVERT trial. Transplantation 87:233–242CrossRefPubMedGoogle Scholar
  65. Schiff J, Cole E, Cantarovich M (2007) Therapeutic monitoring of calcineurin inhibitors for the nephrologist. Clin J Am Soc Nephrol 2:374–384CrossRefPubMedGoogle Scholar
  66. Schubert M, Venkataramanan R, Holt DW et al (2004) Pharmacokinetics of sirolimus and tacrolimus in pediatric transplant patients. Am J Transplant 4:767–773CrossRefPubMedGoogle Scholar
  67. Shaw LM, Holt DW, Keown P et al (1999) Current opinions on therapeutic drug monitoring of immunosuppressive drugs. Clin Ther 21:1632–1652CrossRefPubMedGoogle Scholar
  68. Shihab F, Christians U, Smith L et al (2014) Focus on mTOR inhibitors and tacrolimus in renal transplantation: pharmacokinetics, exposure-response relationships and clinical outcomes. Transplant Immunol 31:22–32CrossRefGoogle Scholar
  69. Sinclair NR (1992) Low dose steroid therapy in cyclosporine-treated renal transplant recipients with well-functioning grafts. Can Med Assoc J 147:645–657Google Scholar
  70. Smak Gregoor PJH, de Sévaux RGL, Ligtenberg G et al (2002) Withdrawal of cyclosporine or prednisone six months after kidney transplantation in patients on triple drug therapy: a randomized, prospective, multicenter study. J Am Soc Nephrol 13:1365–1373CrossRefPubMedGoogle Scholar
  71. Stallone G, Infante B, Grandaliano G et al (2009) Management of side effects of sirolimus therapy. Transplantation 87:S23–S26CrossRefPubMedGoogle Scholar
  72. Stuart FP (2000) Immunosuppression. In: Stuart FP, Abecassis MM, Kaufman DB (eds) Organ transplantation. Vademecum/Landes Bioscience, Georgetown, pp 52–53Google Scholar
  73. Sureshkumar KK, Thai NL, Hussain SM et al (2012) Influence of induction modality on outcome of deceased donor kidney transplant recipients discharged on steroid-free maintenance immunosuppression. Transplantation 93:799–805CrossRefPubMedGoogle Scholar
  74. Sutherland S, Li L, Concepcion W et al (2009) Steroid-free immunosuppression in pediatric renal transplantation: rationale outcomes following conversion to a steroid base therapy. Transplantation 87:1744–1748CrossRefPubMedPubMedCentralGoogle Scholar
  75. Szczech LA, Berlin JA, Feldman HI (1998) The effect of antilymphocyte induction on renal allograft survival. Ann Intern Med 128:817–826CrossRefPubMedGoogle Scholar
  76. Tejani A, Fine R, Alexander S et al (1993) Factors predictive of sustained growth in children after renal transplantation. J Pediatr 122:397–402CrossRefPubMedGoogle Scholar
  77. Van Arendonk KJ, Boyarsky BJ, Orandi BK et al (2014) National trends over 25 years in pediatric transplant outcomes. Pediatrics 133:594–601CrossRefPubMedPubMedCentralGoogle Scholar
  78. Vanrenterghem Y, van Hooff JP, Squifflet J-P et al (2005) Minimization of immunosuppressive therapy after renal transplantation: results of a randomized controlled trial. Am J Transplant 5:87–95CrossRefPubMedGoogle Scholar
  79. Vincenti F, Larsen C, Durrbach A et al (2005) Costimulation blockade with belatacept in renal transplantation. N Engl J Med 353:770–781CrossRefPubMedGoogle Scholar
  80. Vincenti F, Charpentier B, Vanrenterghem Y et al (2010) A phase III study of belatacept-based immunosuppression regimens versus cyclosporine in renal transplant recipients (BENEFIT study). Am J Transplant 10:535–546CrossRefPubMedGoogle Scholar
  81. Vincenti F, Rostaing l, Grinyo J et al (2016) Belatacept and long-term outcomes in kidney transplantation. N Engl J Med 374:333–343CrossRefPubMedGoogle Scholar
  82. Watson CJE, Bradley JA, Friend PJ et al (2005) Alemtuzumab (Campath 1H) induction therapy in cadaveric kidney transplantation – efficacy and safety at five years. Am J Transplant 5:1347–1353CrossRefPubMedGoogle Scholar
  83. Webster AC, Playford EG, Higgines G et al (2004) Interleukin 2 receptor antagonists for renal transplant recipients: a meta-analysis of randomized trials. Transplantation 77:166–176CrossRefPubMedGoogle Scholar
  84. Webster AC, Woodrofffe RC, Taylor RS et al (2005) Tacrolimus versus ciclosporin as primary immunosuppression for kidney transplant recipients: meta-analysis and meta-regression of randomized trial data. BMJ 331:810–820CrossRefPubMedPubMedCentralGoogle Scholar
  85. Wong W, Agrawal N, Pascual M et al (2006) Comparison of two dosages of thymoglobulin used as a short-course for induction in kidney transplantation. Transpl Int 19:629–635CrossRefPubMedGoogle Scholar
  86. Woodle ES, First MR, Pirsch J et al (2008) A prospective, randomized, double-blind, placebo-controlled multicenter trial comparing early (7 day) corticosteroid cessation versus long-term, low-dose corticosteroid therapy. Ann Surg 248:564–577PubMedGoogle Scholar
  87. Zand MS, Vo T, Huggins J et al (2005) Polyclonal rabbit antithymocyte globulin triggers B-cell and plasma cell apoptosis by multiple pathways. Transplantation 79:1507–1515CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Division of Solid Organ Transplantation, EmeritusAlfred I. duPont Hospital for ChildrenWilmingtonUSA
  2. 2.Global Clinical Research, ImmunologyBristol-Myers Squibb, Pharmaceutical Research InstitiutePrincetonUSA

Personalised recommendations