Skip to main content

Variable Neighborhood Descent

  • Living reference work entry
  • First Online:
Handbook of Heuristics

Abstract

Local search heuristic that explores several neighborhood structures in a deterministic way is called variable neighborhood descent (VND). Its success is based on the simple fact that different neighborhood structures do not usually have the same local minimum. Thus, the local optima trap problem may be resolved by deterministic change of neighborhoods. VND may be seen as a local search routine and therefore could be used within other metaheuristics. In this chapter, we discuss typical problems that arise in developing VND heuristic: what neighborhood structures could be used, what would be their order, what rule of their change during the search would be used, etc. Comparative analysis of usual sequential VND variants is performed in solving traveling salesman problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Brimberg J, Hansen P, Mladenović N (2015) Continuous optimization by variable neighborhood search. In: Wiley encyclopedia of operations research and management science. Wiley, Hoboken, p 1–13. doi:10.1002/9780470400531.eorms1107

    Chapter  Google Scholar 

  2. Carrasco R, Pham A, Gallego M, Gortázar F, Martí R, Duarte A (2015) Tabu search for the maxmean dispersion problem. Knowl-Based Syst 85:256–264

    Article  Google Scholar 

  3. Cook WJ, Cunningham WH, Pulleyblank WR, Schrijver A (1997) Combinatorial optimization. Wiley, Chichester

    Book  MATH  Google Scholar 

  4. Deza M, Huang T (1998) Metrics on permutations, a survey. J Comb Inf Syst Sci 23:173–185

    MathSciNet  MATH  Google Scholar 

  5. Dorigo M, Gambardella LM (1997) Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans Evolut Comput 1(1):53–66

    Article  Google Scholar 

  6. Duarte A, Escudero LF, Martí R, Mladenović N, Pantrigo JJ, Sánchez Oro J (2012) Variable neighborhood search for the vertex separation problem. Comput Oper Res 39(12):3247–3255

    Article  MathSciNet  MATH  Google Scholar 

  7. Duarte A, Martí R (2007) Tabu search and GRASP for the maximum diversity problem. Eur J Oper Res 178(1):71–84

    Article  MathSciNet  MATH  Google Scholar 

  8. Duarte A, Sánchez A, Fernández F, Cabido R (2005) A low-level hybridization between memetic algorithm and VNS for the max-cut problem. In: ACM genetic and evolutionary computation conference, New York

    Book  Google Scholar 

  9. Feige U (1998) A threshold of Ln N for approximating set cover. J ACM 45(4):634–652

    Article  MathSciNet  MATH  Google Scholar 

  10. Feo TA, Resende MGC (1995) Greedy randomized adaptive search procedures. J Glob Optim 6:109–133

    Article  MathSciNet  MATH  Google Scholar 

  11. Gallego M, Laguna M, Martí R, Duarte A (2013) Tabu search with strategic oscillation for the maximally diverse grouping problem. J Oper Res Soc 64(5):724–734

    Article  Google Scholar 

  12. Garey MR, Johnson DS (1979) Computers and intractability: a guide to the theory of NP-completeness. W. H. Freeman & Co., New York

    MATH  Google Scholar 

  13. Glover F (1986) Future paths for integer programming and links to artificial intelligence. Comput Oper Res 13(5):533–549

    Article  MathSciNet  MATH  Google Scholar 

  14. Glover F (1998) A template for scatter search and path relinking. In: Selected papers from the third European conference on artificial evolution, AE’97. Springer, London, pp 3–54

    Google Scholar 

  15. Hansen P, Mladenović N (1999) An introduction to variable neighborhood search. In: Meta-Heuristics. Springer, Boston, pp 433–458

    Google Scholar 

  16. Hansen P, Mladenović N (2003) Variable neighborhood search. In: Glover F, Kochenberger G (eds) Handbook of metaheuristics. Kluwer Academic Publisher, New York, pp 145–184

    Chapter  Google Scholar 

  17. Hansen P, Mladenović N (2006) First vs. best improvement: an empirical study. Discret Appl Math 154(5):802–817

    Article  MathSciNet  MATH  Google Scholar 

  18. Hansen P, Mladenović N, Todosijević R, Hanafi S (2016) Variable neighborhood search: basics and variants. EURO J Comput Optim 1–32. DOI:10.1007/s13675-016-0075-x

    Google Scholar 

  19. Holland JH (1992) Adaptation in natural and artificial systems. MIT Press, Cambridge, MA

    Google Scholar 

  20. Hoos H, Süttzle T (2004) Stochastic local search: foundations & applications. Morgan Kaufmann Publishers Inc., San Francisco

    Google Scholar 

  21. Ilić A, Urošević D, Brimberg J, Mladenović N (2010) A general variable neighborhood search for solving the uncapacitated single allocation p-hub median problem. Eur J Oper Res 206(2):289–300

    Article  MathSciNet  MATH  Google Scholar 

  22. Karp RM (1972) Reducibility among combinatorial problems. In: Complexity of computer computations. The IBM research symposia series. Springer, New York, pp 85–103

    Chapter  Google Scholar 

  23. Laarhoven PJM, Aarts EHL (1987) Simulated annealing: theory and applications. Kluwer Academic Publishers, Norwell

    Book  MATH  Google Scholar 

  24. Laguna M, Gortázar F, Gallego M, Duarte A, Martí R (2014) A black-box scatter search for optimization problems with integer variables. J Glob Optim 58(3):497–516

    Article  MathSciNet  MATH  Google Scholar 

  25. Love RF, Morris JG, Wesolowski GO (1988) Facilities location: models and methods. Elsevier Science Publishing Co., New York

    MATH  Google Scholar 

  26. Lü Z, Hao JK, Glover F (2011) Neighborhood analysis: a case study on curriculum-based course timetabling. J Heuristics 17(2):97–118

    Article  Google Scholar 

  27. Makedon FS, Papadimitriou CH, Sudborough IH (1985) Topological bandwidth. SIAM J Algebr Discret Methods 6(3):418–444

    Article  MathSciNet  MATH  Google Scholar 

  28. Martello S, Toth P (1990) Knapsack problems: algorithms and computer implementations. John Wiley & Sons, Inc., New York

    MATH  Google Scholar 

  29. Martí R, Duarte A, Laguna M (2009) Advanced scatter search for the max-cut problem. INFORMS J Comput 21(1):26–38

    Article  MathSciNet  MATH  Google Scholar 

  30. Martí R, Reinelt G, Duarte A (2012) A benchmark library and a comparison of heuristic methods for the linear ordering problem. Comput Optim Appl 51(3):1297–1317

    Article  MathSciNet  MATH  Google Scholar 

  31. Mjirda A, Todosijević R, Hanafi S, Hansen P, Mladenović N (2016) Sequential variable neighborhood descent variants: an empirical study on travelling salesman problem. Int Trans Oper Res. DOI:10.1111/itor.12282

    Google Scholar 

  32. Mladenović N, Hansen P (1997) Variable neighborhood search. Comput Oper Res 24(11):1097–1100

    Article  MathSciNet  MATH  Google Scholar 

  33. Moscato P (1993) An introduction to population approaches for optimization and hierarchical objective functions: a discussion on the role of tabu search. Ann Oper Res 41(1–4):85–121

    Article  MATH  Google Scholar 

  34. Pantrigo JJ, Martí R, Duarte A, Pardo EG (2012) Scatter search for the cutwidth minimization problem. Ann Oper Res 199(1):285–304

    Article  MathSciNet  MATH  Google Scholar 

  35. Papadimitriou CH (1977) The Euclidean travelling salesman problem is NP-complete. Theor Comput Sci 4(3):237–244

    Article  MATH  Google Scholar 

  36. Papadimitriou CH, Steiglitz K (1998) Combinatorial optimization: algorithms and complexity. Dover, Mineola

    MATH  Google Scholar 

  37. Pardo EG, Mladenović N, Pantrigo JJ, Duarte A (2013) Variable formulation search for the cutwidth minimization problem. Appl Soft Comput 13(5):2242–2252

    Article  MATH  Google Scholar 

  38. Peiró J, Corberán A, Martí R (2014) GRASP for the uncapacitated r-allocation p-hub median problem. Comput Oper Res 43:50–60

    Article  MathSciNet  MATH  Google Scholar 

  39. Ruiz R, Stützle T (2006) A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem. Eur J Oper Res 177:2033–2049

    Article  MATH  Google Scholar 

  40. Sánchez Oro J, Mladenović N, Duarte A (2014) General variable neighborhood search for computing graph separators. Optim Lett 1–21. doi:10.1007/s11590-014-0793-z

    Google Scholar 

  41. Sánchez Oro J, Pantrigo JJ, Duarte A (2014) Combining intensification and diversification strategies in VNS. An application to the vertex separation problem. Comput Oper Res 52, Part B(0):209–219. Recent advances in variable neighborhood search

    Google Scholar 

  42. Talbi EG (2009) Metaheuristics: from design to implementation. Wiley, Hoboken

    Book  MATH  Google Scholar 

  43. Todosijević R, Urošević D, Mladenović N, Hanafi S (2015) A general variable neighborhood search for solving the uncapacitated r-allocation p-hub median problem. Optim Lett. doi:10.1007/s11590-015-0867-6

    Google Scholar 

  44. Wu Q, Hao JK, Glover F (2012) Multi-neighborhood tabu search for the maximum weight clique problem. Ann Oper Res 196(1):611–634

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The works of Nenad Mladenović and Raca Todosijević are partly supported by the Ministry of Education and Science, Republic of Kazakhstan (Institute of Information and Computer Technologies), project number 0115PK00546, and also by the Ministry of Education, Science and Technological Development of Serbia, project number 174010. The works of Abraham Duarte and Jesús Sánchez-Oro are partly supported by the Spanish “Ministerio de Economía y Competitividad” and by “Comunidad de Madrid” with grants refs. TIN2012-35632-C02 and S2013/ICE-2894, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abraham Duarte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this entry

Cite this entry

Duarte, A., Mladenović, N., Sánchez-Oro, J., Todosijević, R. (2016). Variable Neighborhood Descent. In: Martí, R., Panos, P., Resende, M. (eds) Handbook of Heuristics. Springer, Cham. https://doi.org/10.1007/978-3-319-07153-4_9-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07153-4_9-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-07153-4

  • eBook Packages: Springer Reference MathematicsReference Module Computer Science and Engineering

Publish with us

Policies and ethics