Skip to main content

Linear Layout Problems

  • Living reference work entry
  • First Online:
Handbook of Heuristics

Abstract

The term layout problem comes from the context of Very Large-Scale Integration (VLSI) circuit design. Graph layouts are optimization problems where the main objective is to project an original graph into a predefined host graph, usually a horizontal line. In this paper, some of the most relevant linear layout problems are reviewed, where the purpose is to minimize the objective function: the Cutwidth, the Minimum Linear Arrangement, the Vertex Separation, the SumCut, and the Bandwidth. Each problem is presented with its formal definition and it is illustrated with a detailed example. Additionally, the most relevant heuristic methods in the associated literature are reviewed together with the instances used in their evaluation. Since linear layouts represent a challenge for optimization methods in general and, for heuristics in particular, this review pays special attention to the strategies and methodologies which provide high-quality solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Adolphson DL (1977) Single machine job sequencing with precedence constraints. SIAM J Comput 6:50–54

    MathSciNet  MATH  Google Scholar 

  2. Adolphson DL, Hu TC (1973) Optimal linear ordering. SIAM J Appl Math 25(3):403–423

    Article  MathSciNet  MATH  Google Scholar 

  3. Álvarez C, Cases R, Díaz J, Petit J, Serna M (2000) Approximation and randomized algorithms in communication networks. In: Routing trees problems on random graphs. ICALP workshops 2000. Carleton Scientific, p 99111

    Google Scholar 

  4. Andrade DV, Resende MGC (2007) GRASP with evolutionary path-relinking. In: Seventh metaheuristics international conference (MIC), Montreal

    Google Scholar 

  5. Andrade DV, Resende MGC (2007) GRASP with path-relinking for network migration scheduling. In: Proceedings of international network optimization conference (INOC), Spa

    Google Scholar 

  6. Bezrukov SL, Chavez JD, Harper LH, öttger MR, Schroeder UP (2000) The congestion of n-cube layout on a rectangular grid. Discret Math 213:13–19

    Google Scholar 

  7. Blin G, Fertin G, Hermelin D, Vialette S (2008) Fixed-parameter algorithms for protein similarity search under mRNA structure constraints. J Discret Algorithms 6:618–626

    Article  MathSciNet  MATH  Google Scholar 

  8. Bodlaender HL, Gilbert JR, Hafsteinsson H, Kloks T (1995) Approximating treewidth, pathwidth, frontsize, and shortest elimination tree. J Algorithms 18(2):238–255

    Article  MathSciNet  MATH  Google Scholar 

  9. Bodlaender HL, Gustedt J, Telle JA (1998) Linear-time register allocation for a fixed number of registers. In: Proceedings of the ninth annual ACM-SIAM symposium on discrete algorithms (SODA’98). Society for Industrial and Applied Mathematics, Philadelphia, pp 574–583

    Google Scholar 

  10. Bodlaender HL, Kloks T, Kratsch D (1993) Treewidth and pathwidth of permutation graphs. In: Lingas A, Karlsson R, Carlsson S (eds) Automata, languages and programming. Lecture notes in computer science, vol 700. Springer, Berlin/Heidelberg, pp 114–125

    Chapter  Google Scholar 

  11. Bodlaender HL, Kloks T, Kratsch D (1995) Treewidth and pathwidth of permutation graphs. SIAM J Discret Math 8(4):606–616

    Article  MathSciNet  MATH  Google Scholar 

  12. Bodlaender HL, Möhring RH (1990) The pathwidth and treewidth of cographs. SIAM J Discret Math 6(6):181–188

    MathSciNet  MATH  Google Scholar 

  13. Bollobás B, Leader I (1991) Edge-isoperimetric inequalities in the grid. Combinatorica 11(4):299–314

    Article  MathSciNet  MATH  Google Scholar 

  14. Botafogo RA (1993) Cluster analysis for hypertext systems. In: 16th annual international ACM-SIGIR conference on research and development in information retrieval, Pittsburgh, PA, USA, pp 116–125

    Google Scholar 

  15. Campos V, Piñana E, Martí R (2011) Adaptive memory programming for matrix bandwidth minimization. Ann Oper Res 183(1):7–23

    Article  MathSciNet  MATH  Google Scholar 

  16. Chinn PZ, Chvátalová J, Dewdney AK, Gibbs NE (1982) The bandwidth problem for graphs and matricesa survey. J Graph Theory 6(3):223–254

    Article  MathSciNet  MATH  Google Scholar 

  17. Chung MJ, Makedon F, Sudborough IH, Turner J (1982) Polynomial time algorithms for the min cut problem on degree restricted trees. In: Proceedings of the 23rd annual symposium on foundations of computer science (SFCS’82). IEEE Computer Society, Washington, DC, pp 262–271

    Google Scholar 

  18. Cohoon J, Sahni S (1983) Exact algorithms for special cases of the board permutation problem. In: Proceedings of the allerton conference on communication, control and computing, Monticello, pp 246–255

    Google Scholar 

  19. Cohoon J, Sahni S (1987) Heuristics for backplane ordering. J VLSI Comput Syst 2:37–61

    Google Scholar 

  20. Harwell-Boeing Sparse Matrix Collection. Public domain matrix market (2016). http://math.nist.gov/matrixmarket/data/harwell-boeing/

    Google Scholar 

  21. Cuthill E, McKee J (1969) Reducing the bandwidth of sparse symmetric matrices. In: Proceedings of the 1969 24th national conference. ACM, New York, pp 157–172

    Google Scholar 

  22. Corso GMD, Manzini G (1999) Finding exact solutions to the bandwidth minimization problem. Computing 62(3):189–203

    Article  MathSciNet  MATH  Google Scholar 

  23. Díaz J, Gibbons A, Pantziou GE, Serna MJ, Spirakis PG, Torán J (1997) Parallel algorithms for the minimum cut and the minimum length tree layout problems. Theor Comput Sci 181:267–287

    Article  MathSciNet  MATH  Google Scholar 

  24. Díaz J, Gibbons A, Paterson M, Torán J (1991) The minsumcut problem. In: Dehne F, Sack J-R, Santoro N (eds) WADS. Lecture notes in computer science, vol 519. Springer, Berlin/Heidelberg, pp 65–89

    Google Scholar 

  25. Díaz J, Penrose MD, Petit J, Serna MJ (2000) Convergence theorems for some layout measures on random lattice and random geometric graphs. Comb Probab Comput 9: 489–511

    Article  MathSciNet  MATH  Google Scholar 

  26. Díaz J, Petit J, Serna MJ (2002) A survey of graph layout problems. ACM Comput Surv (CSUR) 34(3):313–356

    Article  Google Scholar 

  27. Díaz J, Petit J, Serna MJ, Trevisan L (1998) Approximating layout problems on random sparse graphs. Technical report LSI-98-44-R, Departament de Llenguatges i Sistemes Informàtics, Universitat Politècnica de Catalunya (Presented in the fifth Czech-Slovak international symposium on combinatorics, graph theory, algorithms and applications)

    Google Scholar 

  28. Ding G, Oporowski B (1995) Some results on tree decomposition of graphs. J Graph Theory 20(4):481–499

    Article  MathSciNet  MATH  Google Scholar 

  29. Dorigo M (1992) Optimization, learning and natural algorithms. PhD thesis, Politecnico di Milano, Italia

    Google Scholar 

  30. Duarte A, Escudero LF, Martí R, Mladenović N, Pantrigo JJ, Sánchez-Oro J (2012) Variable neighborhood search for the vertex separation problem. Comput Oper Res 39(12):3247–3255

    Article  MathSciNet  MATH  Google Scholar 

  31. Duarte A, Pantrigo JJ, Pardo EG, Mladenović N (2015) Multi-objective variable neighborhood search: an application to combinatorial optimization problems. J Glob Optim 63(3):515–536

    Article  MathSciNet  MATH  Google Scholar 

  32. Duarte A, Pantrigo JJ, Pardo EG, Sánchez-Oro J (2016) Parallel variable neighbourhood search strategies for the cutwidth minimization problem. IMA J Manag Math 27(1):55–73

    Article  MathSciNet  Google Scholar 

  33. Dueck G, Jeffs J (1995) A heuristic bandwidth reduction algorithm. J comb math comput 18:97–108

    MathSciNet  MATH  Google Scholar 

  34. Duff IS, Grimes RG, Lewis JG (1989) Sparse matrix test problems. ACM Trans Math Softw 15(1):1–14

    Article  MathSciNet  MATH  Google Scholar 

  35. Duff IS, Grimes RG, Lewis JG (1992) User’s guide for the harwell-boeing sparse matrix collection (release I), Rutherford Appleton Laboratory, Chilton

    Google Scholar 

  36. Dujmovic V, Fellows MR, Kitching M, Liotta G, McCartin C, Nishimura N, Ragde P, Rosamond F, Whitesides S, Wood DR (2008) On the parameterized complexity of layered graph drawing. Algorithmica 52(2):267–292

    Article  MathSciNet  MATH  Google Scholar 

  37. Ellis JA, Sudborough IH, Turner JS (1994) The vertex separation and search number of a graph. Inf Comput 113(1):50–79

    Article  MathSciNet  MATH  Google Scholar 

  38. Ellis JA, Markov M (2004) Computing the vertex separation of unicyclic graphs. Inf Comput 192(2):123–161

    Article  MathSciNet  MATH  Google Scholar 

  39. Fellows MR, Langston MA (1994) On search, decision, and the efficiency of polynomial-time algorithms. J Comput Syst Sci 49(3):769–779

    Article  MathSciNet  MATH  Google Scholar 

  40. Feo TA, Resende MGC (1989) A probabilistic heuristic for a computationally difficult set covering problem. Oper Res Lett 8(2):67–71

    Article  MathSciNet  MATH  Google Scholar 

  41. Feo TA, Resende MGC (1995) Greedy randomized adaptive search procedures. J Glob Optim 6(2):109–133

    Article  MathSciNet  MATH  Google Scholar 

  42. Garey MR, Johnson DS (1979) Computers and intractability: a Guide to the theory of np-completeness. W.H. Freeman, San Francisco

    MATH  Google Scholar 

  43. Gavril F (1977) Some NP-complete problems on graphs. In: Proceedings of the eleventh conference on information sciences and systems, Baltimore, pp 91–95

    Google Scholar 

  44. Gibbs NE, Poole WG Jr, Stockmeyer PK (1976) An algorithm for reducing the bandwidth and profile of a sparse matrix. SIAM J Numer Anal 13(2):236–250

    Article  MathSciNet  MATH  Google Scholar 

  45. Glover F (1977) Heuristics for integer programming using surrogate constraints. Decis Sci 8(1):156–166

    Article  Google Scholar 

  46. Glover F (1997) Tabu search and adaptive memory programming—advances, applications and challenges. Springer, Boston, pp 1–75

    MATH  Google Scholar 

  47. Glover F, Laguna M (1997) Tabu search. Kluwer Academic Publishers, Norwell

    Book  MATH  Google Scholar 

  48. Golberg DE (1989) Genetic algorithms in search, optimization, and machine learning. Addion wesley 1989:102

    Google Scholar 

  49. Golovach P (2009) The total vertex separation number of a graph. Discret Math Appl 6(7):631–636

    MathSciNet  MATH  Google Scholar 

  50. Harper LH (1964) Optimal assignments of numbers to vertices. J Soc Ind Appl Math 12(1):131–135

    Article  MathSciNet  MATH  Google Scholar 

  51. Harper LH (1966) Optimal numberings and isoperimetric problems on graphs. J Comb Theory 1:385–393

    Article  MathSciNet  MATH  Google Scholar 

  52. Holland JH (1975) Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. University of Michigan Press, Ann Arbor

    MATH  Google Scholar 

  53. Hu TC (1974) Optimum communication spanning trees. SIAM J Comput 3(3):188–195

    Article  MathSciNet  MATH  Google Scholar 

  54. Johnson DS, Lenstra JK, Kan AHGR (1978) The complexity of the network design problem. Networks 8(4):279–285

    Article  MathSciNet  MATH  Google Scholar 

  55. Juvan M, Marincek J, Mohar B (1995) Embedding a graph into the torus in linear time. Springer, Berlin/Heidelberg, pp 360–363

    Google Scholar 

  56. Juvan M, Mohar B 1992 Optimal linear labelings and eigenvalues of graphs. Discret Appl Math 36:153–168

    Article  MathSciNet  MATH  Google Scholar 

  57. Karger DR (1999) A randomized fully polynomial time approximation scheme for the all-terminal network reliability problem. SIAM J Comput 29(2):492–514

    Article  MathSciNet  MATH  Google Scholar 

  58. Karp RM (1993) Mapping the genome: some combinatorial problems arising in molecular biology. In: Proceedings of the twenty-fifth annual ACM symposium on theory of computing. ACM, New York, pp 278–285

    Google Scholar 

  59. Kendall D (1969) Incidence matrices, interval graphs and seriation in archeology. Pac J math 28(3):565–570

    Article  MathSciNet  MATH  Google Scholar 

  60. Kennedy J Eberhart R (1995) Particle swarm optimization. In: Proceedings of the IEEE international conference on neural networks, Yokohama, vol 4, pp 1942–1948

    Article  Google Scholar 

  61. Kinnersley NG (1992) The vertex separation number of a graph equals its path-width. Inf Process Lett 42(6):345–350

    Article  MathSciNet  MATH  Google Scholar 

  62. Kirkpatrick S, Gelatt CD, Vecchi MP 1983 Optimization by simulated annealing. Science 220(4598):671–680

    Article  MathSciNet  MATH  Google Scholar 

  63. Kirousis LM, Papadimitriou CH (1985) Interval graphs and searching. Discret Math 55(2):181–184

    Article  MathSciNet  MATH  Google Scholar 

  64. Kirousis LM, Papadimitriou CH (1986) Searching and pebbling. Theor Comput Sci 47(0):205–218

    Article  MathSciNet  MATH  Google Scholar 

  65. Klugerman M, Russell A, Sundaram R (1998) On embedding complete graphs into hypercubes. Discret Math 186(13):289–293

    Article  MathSciNet  MATH  Google Scholar 

  66. Laguna M, Martí R (2012) Scatter search: methodology and implementations in C, vol 24. Springer Science & Business Media, New York

    MATH  Google Scholar 

  67. Leiserson CE (1980) Area-efficient graph layouts (for vlsi). In: IEEE symposium on foundations of computer science, Syracuse, pp 270–281

    Google Scholar 

  68. Lewis JG (1982) The gibbs-poole-stockmeyer and gibbs-king algorithms for reordering sparse matrices. ACM Trans Math Softw (TOMS) 8(2):190–194

    Article  Google Scholar 

  69. Lewis RR (1994) Simulated annealing for profile and fill reduction of sparse matrices. Int J Numer Methods Eng 37(6):905–925

    Article  MATH  Google Scholar 

  70. Lim A, Lin J, Rodrigues B, Xiao F (2006) Ant colony optimization with hill climbing for the bandwidth minimization problem. Appl Soft Comput 6(2):180–188

    Article  Google Scholar 

  71. Lim A, Lin J, Xiao F (2007) Particle swarm optimization and hill climbing for the bandwidth minimization problem. Appl Intell 26(3):175–182

    Article  MATH  Google Scholar 

  72. Lim A, Rodrigues B, Xiao F (2006) Heuristics for matrix bandwidth reduction. Eur J Oper Res 174(1):69–91

    Article  MathSciNet  MATH  Google Scholar 

  73. Lin YX (1994) Two-dimensional bandwidth problem. In: Combinatorics, graph theory, algorithms and applications 1993, Beijing, pp 223–232

    Google Scholar 

  74. Lipton RJ, Tarjan RE (1979) A separator theorem for planar graphs. SIAM J Appl Math 36(2):177–189

    Article  MathSciNet  MATH  Google Scholar 

  75. Livingston M, Stout QF (1988) Embeddings in hypercubes. Math Comput Model 11(0): 222–227

    Article  MathSciNet  Google Scholar 

  76. López-Locés MC, Castillo-García N, Huacuja HJF, Bouvry P, Pecero JE, Rangel RAP, Barbosa JJG, Valdez F (2014) A new integer linear programming model for the cutwidth minimization problem of a connected undirected graph. In: Recent advances on hybrid approaches for designing intelligent systems. Springer, Cham, pp 509–517

    Chapter  Google Scholar 

  77. Lozano M, Duarte A, Gortázar F, Martí R (2013) A hybrid metaheuristic for the cyclic antibandwidth problem. Knowl-Based Syst 54:103–113

    Article  Google Scholar 

  78. Luttamaguzi J, Pelsmajer M, Shen Z, Yang B (2005) Integer programming solutions for several optimization problems in graph theory. Technical report, Center for Discrete Mathematics and Theoretical Computer Science, DIMACS

    Google Scholar 

  79. Makedon F Sudborough IH (1989) On minimizing width in linear layouts. Discret Appl Math 23(3):243–265

    Article  MathSciNet  MATH  Google Scholar 

  80. Martí R, Campos V, Piñana E (2008) A branch and bound algorithm for the matrix bandwidth minimization. Eur J Oper Res 186(2):513–528

    Article  MathSciNet  MATH  Google Scholar 

  81. Martí R, Laguna M, Glover F, Campos V (2001) Reducing the bandwidth of a sparse matrix with tabu search. Eur J Oper Res 135(2):450–459

    Article  MathSciNet  MATH  Google Scholar 

  82. Martí R, Pantrigo JJ, Duarte A, Campos V, Glover F (2011) Scatter search and path relinking: a tutorial on the linear arrangement problem. Int J Swarm Intell Res (IJSIR) 2(2):1–21

    Article  Google Scholar 

  83. Martí R, Pantrigo JJ, Duarte A, Pardo EG (2013) Branch and bound for the cutwidth minimization problem. Comput Oper Res 40(1):137–149

    Article  MathSciNet  MATH  Google Scholar 

  84. Mcallister AJ (1999) A new heuristic algorithm for the linear arrangement problem. Technical report, University of New Brunswick

    Google Scholar 

  85. Miller Z, Sudborough IH 1991 A polynomial algorithm for recognizing bounded cutwidth in hypergraphs. Theory Comput Syst 24:11–40

    MathSciNet  MATH  Google Scholar 

  86. Mitchison G, Durbin R (1986) Optimal numberings of an n × n array. Algebr Discret Methods 7(4):571–582

    Article  MathSciNet  MATH  Google Scholar 

  87. Mladenović N, Hansen P (1997) Variable neighborhood search. Comput Oper Res 24(11):1097–1100

    Article  MathSciNet  MATH  Google Scholar 

  88. Mladenović N, Urošević D, Pérez-Brito D (2014) Variable neighborhood search for minimum linear arrangement problem. Yugosl J Oper Res 24(2):2334–6043. ISSN:0354-0243

    Google Scholar 

  89. Mladenović N, Urošević D, Pérez-Brito D, García-González CG (2010) Variable neighbourhood search for bandwidth reduction. Eur J Oper Res 200(1):14–27

    Article  MathSciNet  MATH  Google Scholar 

  90. Mutzel P (1995) A polyhedral approach to planar augmentation and related problems. In: Proceedings of the third annual European symposium on algorithms, ESA’95. Springer, London, pp 494–507

    Google Scholar 

  91. Palubeckis G, Rubliauskas D (2012) A branch-and-bound algorithm for the minimum cut linear arrangement problem. J comb optim 24(4):540–563

    Article  MathSciNet  MATH  Google Scholar 

  92. Pantrigo JJ, Martí R, Duarte A, Pardo EG (2012) Scatter search for the cutwidth minimization problem. Ann Oper Res 199:285–304

    Article  MathSciNet  MATH  Google Scholar 

  93. Papadimitriou CH (1976) The NP-completeness of the bandwidth minimization problem. Computing 16:263–270

    Article  MathSciNet  MATH  Google Scholar 

  94. Pardo EG, Mladenović N, Pantrigo JJ, Duarte A (2012) A variable neighbourhood search approach to the cutwidth minimization problem. Electron Notes Discret Math 39(0):67–74

    Article  MathSciNet  MATH  Google Scholar 

  95. Pardo EG, Mladenović N, Pantrigo JJ, Duarte A (2013) Variable formulation search for the cutwidth minimization problem. Appl Soft Comput 13(5):2242–2252

    Article  MATH  Google Scholar 

  96. Pardo EG, Soto M, Thraves C (2015) Embedding signed graphs in the line. J Comb Optim 29(2):451–471

    Article  MathSciNet  MATH  Google Scholar 

  97. Peng SL, Ho CW, Hsu TS, Ko MT, Tang C (1998) A linear-time algorithm for constructing an optimal node-search strategy of a tree. In: Hsu W-L, Kao M-Y (eds) Computing and combinatorics. Lecture notes in computer science, vol 1449. Springer, Berlin/Heidelberg, pp 279–289

    Chapter  Google Scholar 

  98. Petit J (2003) Combining spectral sequencing and parallel simulated annealing for the minla problem. Parallel Process Lett 13(1):77–91

    Article  MathSciNet  Google Scholar 

  99. Petit J (2003) Experiments on the minimum linear arrangement problem. ACM J Exp Algorithm 8:2–3

    MathSciNet  MATH  Google Scholar 

  100. Piñana E, Plana I, Campos V, Martí R (2004) GRASP and path relinking for the matrix bandwidth minimization. Eur J Oper Res 153(1):200–210

    Article  MathSciNet  MATH  Google Scholar 

  101. Pop PC, Matei O (2011) An improved heuristic for the bandwidth minimization based on genetic programming. In: Hybrid artificial intelligent systems. Springer, Berlin, pp 67–74

    Chapter  Google Scholar 

  102. Raspaud A, Schröder H, Sỳkora O, Torok L, Vrto I (2009) Antibandwidth and cyclic antibandwidth of meshes and hypercubes. Discret Math 309(11):3541–3552

    Article  MathSciNet  MATH  Google Scholar 

  103. Ravi R, Agrawal A, Klein P (1991) Ordering problems approximated: single-processor scheduling and interval graph completion. In: Proceedings of the ICALP. Springer, Berlin, pp 751–762

    Google Scholar 

  104. Resende MGC, Andrade DV (2009) Method and system for network migration scheduling. United States Patent Application Publication. US2009/0168665

    Google Scholar 

  105. Rodriguez-Tello E, Hao J-K, Torres-Jimenez J (2008) An effective two-stage simulated annealing algorithm for the minimum linear arrangement problem. Comput Oper Res 35(10):3331–3346

    Article  MATH  Google Scholar 

  106. Rodriguez-Tello E, Hao J-K, Torres-Jimenez J (2008) An improved simulated annealing algorithm for bandwidth minimization. Eur J Oper Res 185(3):1319–1335

    Article  MATH  Google Scholar 

  107. Rolim J, Sýkora O, Vrt’o I (1995) Optimal cutwidths and bisection widths of 2- and 3-dimensional meshes. In: Graph-theoretic concepts in computer science. Lecture notes in computer science, vol 1017. Springer, Berlin/Heidelberg, pp 252–264

    Google Scholar 

  108. Saad Y (2003) Iterative methods for sparse linear systems. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  109. Sánchez-Oro J, Duarte A (2012) An experimental comparison of variable neighborhood search variants for the minimization of the vertex-cut in layout problems. Electron Notes Discret Math 39:59–66

    Article  MathSciNet  MATH  Google Scholar 

  110. Sánchez-Oro J, Duarte A (2012) Grasp with path relinking for the sumcut problem. Int J Comb Optim Probl Inf 3:3–11

    Google Scholar 

  111. Sánchez-Oro J, Duarte A Grasp for the sumcut problem. In: XVII international congress on computer science research, Morelia (México), 26–28/10/2011

    Google Scholar 

  112. Sánchez-Oro J, Laguna M, Duarte A, Martí R (2015) Scatter search for the profile minimization problem. Networks 65(1):10–21

    Article  MathSciNet  Google Scholar 

  113. Sánchez-Oro J, Pantrigo JJ, Duarte A (2014) Combining intensification and diversification strategies in VNS. An application to the vertex separation problem. Comput Oper Res 52(Part B):209–219

    Google Scholar 

  114. Shahrokhi F, Sýkora O, Székely LA, Vrt’o I (2001) On bipartite drawings and the linear arrangement problem. SIAM J Comput 30(6):1773–1789

    Article  MathSciNet  MATH  Google Scholar 

  115. Shiloach Y (1979) A minimum linear arrangement algorithm for undirected trees. SIAM J Comput 8(1):15–32

    Article  MathSciNet  MATH  Google Scholar 

  116. Skodinis K (2000) Computing optimal linear layouts of trees in linear time. In: Proceedings of the 8th annual European symposium on algorithms, ESA’00. Springer, London, pp 403–414

    Google Scholar 

  117. Sýkora O, Torok L, Vrt’o I (2005) The cyclic antibandwidth problem. Electron Notes Discret Math 7th Int Colloq Graph Theory 22:223–227

    Google Scholar 

  118. Takagi K, Takagi N (1999) Minimum cut linear arrangement of p-q dags for VLSI layout of adder trees. IEICE Trans Fundam Electron Commun Comput Sci E82-A(5):767–774

    Google Scholar 

  119. Tewarson RP (1973) Sparse matrices, vol 69. Academic Press, New York

    MATH  Google Scholar 

  120. Thilikos DM, Serna MJ, Bodlaender HL (2005) Cutwidth II: algorithms for partial w-trees of bounded degree. J Algorithms 56(1):25–49

    Article  MathSciNet  MATH  Google Scholar 

  121. Woodcock JR (2006) A faster algorithm for torus embedding. PhD thesis, University of Victoria

    Google Scholar 

  122. Yannakakis M (1985) A polynomial algorithm for the min-cut linear arrangement of trees. J ACM (JACM) 32:950–988

    Article  MathSciNet  MATH  Google Scholar 

  123. Yuan J, Lin Y, Liu Y, Wang S (1998) NP-completeness of the profile problem and the fill-in problem on cobipartite graphs. J Math Study 31(3):239–243

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research has been partially supported by Fondo Europeo de Desarrollo Regional (FEDER) and Ministerio de Economía y Competitividad (MINECO) of Spain. Grant Ref. TIN2015-65460-C2 (MINECO/FEDER).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo G. Pardo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this entry

Cite this entry

Pardo, E.G., Martí, R., Duarte, A. (2016). Linear Layout Problems. In: Martí, R., Panos, P., Resende, M. (eds) Handbook of Heuristics. Springer, Cham. https://doi.org/10.1007/978-3-319-07153-4_45-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07153-4_45-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-07153-4

  • eBook Packages: Springer Reference MathematicsReference Module Computer Science and Engineering

Publish with us

Policies and ethics