Skip to main content

Particle Swarm Methods

  • Reference work entry
  • First Online:
Book cover Handbook of Heuristics

Abstract

Particle swarm optimization has gained increasing popularity in the past 15 years. Its effectiveness and efficiency has rendered it a valuable metaheuristic approach in various scientific fields where complex optimization problems appear. Its simplicity has made it accessible to the non-expert researchers, while the potential for easy adaptation of operators and integration of new procedures allows its application on a wide variety of problems with diverse characteristics. Additionally, its inherent decentralized nature allows easy parallelization, taking advantage of modern high-performance computer systems. The present work exposes the basic concepts of particle swarm optimization and presents a number of popular variants that opened new research directions by introducing novel ideas in the original model of the algorithm. The focus is placed on presenting the essential information of the algorithms rather than covering all the details. Also, a large number of references and sources is provided for further inquiry. Thus, the present text can serve as a starting point for researchers interested in the development and application of particle swarm optimization and its variants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abido MA (2010) Multiobjective particle swarm optimization with nondominated local and global sets. Nat Comput 9(3):747–766

    Article  MathSciNet  MATH  Google Scholar 

  2. Agrawal S, Panigrahi BK, Tiwari MK (2008) Multiobjective particle swarm algorithm with fuzzy clustering for electrical power dispatch. IEEE Trans Evol Comput 12(5):529–541

    Article  Google Scholar 

  3. Ahmadi MA (2012) Neural network based unified particle swarm optimization for prediction of asphaltene precipitation. Fluid Phase Equilib 314:46–51

    Article  Google Scholar 

  4. Aote AS, Raghuwanshi MM, Malik L (2013) A brief review on particle swarm optimization: limitations & future directions. Int J Comput Sci Eng 2(5):196–200

    Google Scholar 

  5. Aziz M, Tayarani-N M-H (2014) An adaptive memetic particle swarm optimization algorithm for finding large-scale latin hypercube designs. Eng Appl Artif Intell 36:222–237

    Article  Google Scholar 

  6. Banks A, Vincent J, Anyakoha C (2007) A review of particle swarm optimization. Part i: background and development. Nat Comput 6(4):467–484

    Article  MathSciNet  MATH  Google Scholar 

  7. Banks A, Vincent J, Anyakoha C (2008) A review of particle swarm optimization. Part ii: hybridisation, combinatorial, multicriteria and constrained optimization, and indicative applications. Nat Comput 7(1):109–124

    Article  MathSciNet  MATH  Google Scholar 

  8. T. Bartz-Beielstein, Blum D, Branke J (2007) Particle swarm optimization and sequential sampling in noisy environments. In: Doerner KF et al (ed) Metaheuristics: progress in complex systems optimization. Operations research/computer science interfaces series, vol 39. Springer, New York, pp 261–273

    Chapter  MATH  Google Scholar 

  9. Bin W, Qinke P, Jing Z, Xiao C (2012) A binary particle swarm optimization algorithm inspired by multi-level organizational learning behavior. Eur J Oper Res 219(2):224–233

    Article  MathSciNet  MATH  Google Scholar 

  10. Blackwell T (2012) A study of collapse in bare bones particle swarm optimization. IEEE Trans Evol Comput 16(3):354–372

    Article  Google Scholar 

  11. Blum C, Puchinger J, Raidl GR, Roli A (2011) Hybrid metaheuristics in combinatorial optimization: a survey. Appl Soft Comput J 11(6):4135–4151

    Article  MATH  Google Scholar 

  12. Bonabeau E, Dorigo M, Théraulaz G (1999) Swarm intelligence: from natural to artificial systems. Oxford University Press, New York

    MATH  Google Scholar 

  13. Bonyadi MR, Michalewicz Z (2014) SPSO2011 – analysis of stability, local convergence, and rotation sensitivity. In: GECCO 2014 – proceedings of the 2014 genetic and evolutionary computation conference, Vancouver, pp 9–15

    Google Scholar 

  14. Camci F (2009) Comparison of genetic and binary particle swarm optimization algorithms on system maintenance scheduling using prognostics information. Eng Optim 41(2):119–136

    Article  Google Scholar 

  15. Chauhan P, Deep K, Pant M (2013) Novel inertia weight strategies for particle swarm optimization. Memet Comput 5(3):229–251

    Article  Google Scholar 

  16. Chen C-H, Lin J, Yücesan E, Chick SE (2000) Simulation budget allocation for further enhancing the efficiency of ordinal optimization. Discr Event Dyn Syst Theory Appl 10(3):251–270

    Article  MathSciNet  MATH  Google Scholar 

  17. Chen J, Yang D, Feng Z (2012) A novel quantum particle swarm optimizer with dynamic adaptation. J Comput Inf Syst 8(12):5203–5210

    Google Scholar 

  18. Chen Z, He Z, Zhang C (2010) Particle swarm optimizer with self-adjusting neighborhoods. In: Proceedings of the 12th annual genetic and evolutionary computation conference (GECCO 2010), Portland, pp 909–916

    Google Scholar 

  19. Clerc M (2006) Particle swarm optimization. ISTELtd, London

    Book  MATH  Google Scholar 

  20. Clerc M (2012) Standard particle swarm optimization. Technical report 2012, Particle Swarm Central

    Google Scholar 

  21. Clerc M, Kennedy J (2002) The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Trans Evol Comput 6(1):58–73

    Article  Google Scholar 

  22. Coelho LdS (2008) A quantum particle swarm optimizer with chaotic mutation operator. Chaos Solitons Fractals 37(5):1409–1418

    Article  Google Scholar 

  23. Coello Coello CA (1999) Self-adaptive penalties for GA-based optimization. In: Proceedings of the 1999 IEEE congress on evolutionary computation, Washington, vol 1, pp 573–580

    Google Scholar 

  24. Coello Coello CA, Van Veldhuizen DA, Lamont GB (2002) Evolutionary algorithms for solving multi-objective problems. Kluwer, New York

    Book  MATH  Google Scholar 

  25. Cooren Y, Clerc M, Siarry P (2008) Initialization and displacement of the particles in TRIBES, a parameter-free particle swarm optimization algorithm. Stud Comput Intell 136:199–219

    Google Scholar 

  26. Cooren Y, Clerc M, Siarry P (2009) Performance evaluation of TRIBES, an adaptive particle swarm optimization algorithm. Swarm Intell 3(2):149–178

    Article  MATH  Google Scholar 

  27. Cooren Y, Clerc M, Siarry P (2011) MO-TRIBES, an adaptive multiobjective particle swarm optimization algorithm. Comput Optim Appl 49(2):379–400

    Article  MathSciNet  MATH  Google Scholar 

  28. Dai Y, Liu L, Feng S (2014) On the identification of coupled pitch and heave motions using opposition-based particle swarm optimization. Math Probl Eng 2014(3):1–10

    Google Scholar 

  29. Daneshyari M, Yen GG (2011) Cultural-based multiobjective particle swarm optimization. IEEE Trans Syst Man Cybern Part B Cybern 41(2):553–567

    Article  Google Scholar 

  30. Daoudi M, Boukra A, Ahmed-Nacer M (2011) Adapting TRIBES algorithm for traveling salesman problem. In: Proceedings of the 10th international symposium on programming and systems (ISPS’ 2011), pp 163–168

    Google Scholar 

  31. Davarynejad M, Van Den Berg J, Rezaei J (2014) Evaluating center-seeking and initialization bias: the case of particle swarm and gravitational search algorithms. Inf Sci 278:802–821

    Article  MathSciNet  Google Scholar 

  32. Dos Santos Coelho L, Ayala HVH, Alotto P (2010) A multiobjective gaussian particle swarm approach applied to electromagnetic optimization. IEEE Trans Mag 46(8):3289–3292

    Article  Google Scholar 

  33. Eberhart RC, Kennedy J (1995) A new optimizer using particle swarm theory. In: Proceedings sixth symposium on micro machine and human science, Piscataway, pp 39–43. IEEE Service Center

    Google Scholar 

  34. Engelbrecht AP (2006) Fundamentals of computational swarm intelligence. Wiley, Chichester

    Google Scholar 

  35. Eslami M, Shareef H, Khajehzadeh M, Mohamed A (2012) A survey of the state of the art in particle swarm optimization. R J Appl Sci Eng Technol 4(9):1181–1197

    Google Scholar 

  36. Gao W-F, Liu S-Y, Huang L-L (2012) Particle swarm optimization with chaotic opposition-based population initialization and stochastic search technique. Commun Nonlinear Sci Numer Simul 17(11):4316–4327

    Article  MathSciNet  MATH  Google Scholar 

  37. Ge RP, Qin YF (1987) A class of filled functions for finding global minimizers of a function of several variables. J Optim Theory Appl 54:241–252

    Article  MathSciNet  MATH  Google Scholar 

  38. Gholipour R, Khosravi A, Mojallali H (2013) Suppression of chaotic behavior in duffing-holmes system using backstepping controller optimized by unified particle swarm optimization algorithm. Int J Eng Trans B Appl 26(11):1299–1306

    Google Scholar 

  39. Gholizadeh S, Moghadas R (2014) Performance-based optimum design of steel frames by an improved quantum particle swarm optimization. Adv Struct Eng 17(2):143–156

    Article  Google Scholar 

  40. Goudos SK, Moysiadou V, Samaras T, Siakavara K, Sahalos JN (2010) Application of a comprehensive learning particle swarm optimizer to unequally spaced linear array synthesis with sidelobe level suppression and null control. IEEE Antennas Wirel Propag Lett 9:125–129

    Article  Google Scholar 

  41. He G, Wu B (2014) Unified particle swarm optimization with random ternary variables and its application to antenna array synthesis. J Electromag Waves Appl 28(6): 752–764

    Article  Google Scholar 

  42. He J, Dai H, Song X (2014) The combination stretching function technique with simulated annealing algorithm for global optimization. Optim Methods Softw 29(3): 629–645

    Article  MathSciNet  MATH  Google Scholar 

  43. Hu Z, Bao Y, Xiong T (2014) Comprehensive learning particle swarm optimization based memetic algorithm for model selection in short-term load forecasting using support vector regression. Appl Soft Comput J 25:15–25

    Article  Google Scholar 

  44. Huang K-W, Chen J-L, Yang C-S, Tsai C-W (2015) A memetic particle swarm optimization algorithm for solving the dna fragment assembly problem. Neural Comput Appl 26(3): 495–506

    Article  Google Scholar 

  45. Jamalipour M, Gharib M, Sayareh R, Khoshahval F (2013) PWR power distribution flattening using quantum particle swarm intelligence. Ann Nucl Energy 56:143–150

    Article  Google Scholar 

  46. Janson S, Middendorf M (2004) A hierarchical particle swarm optimizer for dynamic optimization problems. Lecture notes in computer science, vol 3005. Springer, Berlin/New York, pp 513–524

    Google Scholar 

  47. Janson S, Middendorf M (2006) A hierarchical particle swarm optimizer for noisy and dynamic environments. Genet Program Evol Mach 7(4):329–354

    Article  Google Scholar 

  48. Jiang B, Wang N (2014) Cooperative bare-bone particle swarm optimization for data clustering. Soft Comput 18(6):1079–1091

    Article  Google Scholar 

  49. Jiang M, Luo YP, Yang SY (2007) Stochastic convergence analysis and parameter selection of the standard particle swarm optimization algorithm. Inf Process Lett 102:8–16

    Article  MathSciNet  MATH  Google Scholar 

  50. Jiao B, Yan S (2011) A cooperative co-evolutionary quantum particle swarm optimizer based on simulated annealing for job shop scheduling problem. Int J Artif Intell 7(11 A): 232–247

    Google Scholar 

  51. Jin N, Rahmat-Samii Y (2007) Advances in particle swarm optimization for antenna designs: real-number, binary, single-objective and multiobjective implementations. IEEE Trans Antennas Propag 55(3 I):556–567

    Google Scholar 

  52. Jin N, Rahmat-Samii Y (2010) Hybrid real-binary particle swarm optimization (HPSO) in engineering electromagnetics. IEEE Trans Antennas Propag 58(12):3786–3794

    Article  Google Scholar 

  53. Jin Y, Olhofer M, Sendhoff B (2001) Evolutionary dynamic weighted aggregation for multiobjective optimization: why does it work and how? In: Proceedings GECCO 2001 conference, San Francisco, pp 1042–1049

    Google Scholar 

  54. Kadirkamanathan V, Selvarajah K, Fleming PJ (2006) Stability analysis of the particle dynamics in particle swarm optimizer. IEEE Trans Evol Comput 10(3):245–255

    Article  Google Scholar 

  55. Kaucic M (2013) A multi-start opposition-based particle swarm optimization algorithm with adaptive velocity for bound constrained global optimization. J Glob Optim 55(1):165–188

    Article  MathSciNet  MATH  Google Scholar 

  56. Kennedy J (1998) The behavior of particles. In: Porto VW, Saravanan N, Waagen D, Eiben AE (eds) Evolutionary programming, vol VII. Springer, Berlin/New York, pp 581–590

    Google Scholar 

  57. Kennedy J (1999) Small worlds and mega-minds: effects of neighborhood topology on particle swarm performance. In: Proceedings of the IEEE congress on evolutionary computation, Washington, DC. IEEE Press, pp 1931–1938

    Google Scholar 

  58. Kennedy J (2003) Bare bones particle swarms. In: Proceedings of the IEEE swarm intelligence symposium, Indianapolis. IEEE Press, pp 80–87

    Google Scholar 

  59. Kennedy J (2010) Particle swarm optimization. In: Sammut C, Webb G (eds) Encyclopedia of machine learning. Springer, Boston, pp 760–766

    Google Scholar 

  60. Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proceeding of the IEEE international conference neural networks, Piscataway, vol IV. IEEE Service Center, pp 1942–1948

    Google Scholar 

  61. Kennedy J, Eberhart RC (1997) A discrete binary version of the particle swarm algorithm. In: Proceedings of the conference on systems, man and cybernetics, Hyatt Orlando, pp 4104–4109

    Google Scholar 

  62. Kennedy J, Eberhart RC (2001) Swarm intelligence. Morgan Kaufmann Publishers, San Francisco

    Google Scholar 

  63. Kiranyaz S, Ince T, Gabbouj M (2014) Multidimensional particle swarm optimization for machine learning and pattern recognition. Springer, Berlin

    Book  MATH  Google Scholar 

  64. Kishk A (2008) Particle swarm optimizaton: a physics-based approach. Morgan and Claypool Publishers, Arizona

    Google Scholar 

  65. Kotsireas IS, Koukouvinos C, Parsopoulos KE, Vrahatis MN (2006) Unified particle swarm optimization for Hadamard matrices of Williamson type. In: Proceedings of the 1st international conference on mathematical aspects of computer and information sciences (MACIS 2006), Beijing, pp 113–121

    Google Scholar 

  66. Krohling RA, Campos M, Borges P (2010) Bare bones particle swarm applied to parameter estimation of mixed weibull distribution. Adv Intell Soft Comput 75:53–60

    Google Scholar 

  67. Kwok NM, Ha QP, Liu DK, Fang G, Tan KC (2007) Efficient particle swarm optimization: a termination condition based on the decision-making approach. In: Proceedings of the 2007 IEEE congress on evolutionary computation (CEC 2007), Singapore, pp 3353–3360

    Google Scholar 

  68. Laskari EC, Parsopoulos KE, Vrahatis MN (2002) Particle swarm optimization for integer programming. In: Proceedings of the IEEE 2002 congress on evolutionary computation (IEEE CEC 2002), Honolulu. IEEE Press, pp 1582–1587

    Google Scholar 

  69. Lawler EL, Wood DW (1966) Branch and bound methods: a survey. Oper Res 14:699–719

    Article  MathSciNet  MATH  Google Scholar 

  70. Li X (2007) A multimodal particle swarm optimizer based on fitness Euclidean-distance ratio. ACM, New York, pp 78–85

    Google Scholar 

  71. Li X (2010) Niching without Niching parameters: Particle swarm optimization using a ring topology. IEEE Trans Evol Comput 14(1):150–169

    Article  Google Scholar 

  72. Liang JJ, Qin AK, Suganthan PN, Baskar S (2006) Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans Evol Comput 10(3):281–295

    Article  Google Scholar 

  73. Likas A, Blekas K, Stafylopatis A (1996) Parallel recombinative reinforcement learning: a genetic approach. J Intell Syst 6(2):145–169

    Google Scholar 

  74. Liu B-F, Chen H-M, Chen J-H, Hwang S-F, Ho S-Y (2005) MeSwarm: memetic particle swarm optimization. ACM, New York, pp 267–268

    Google Scholar 

  75. Liu DS, Tan KC, Huang SY, Goh CK, Ho WK (2008) On solving multiobjective bin packing problems using evolutionary particle swarm optimization. Eur J Oper Res 190(2): 357–382

    Article  MathSciNet  MATH  Google Scholar 

  76. Liu R, Zhang P, Jiao L (2014) Quantum particle swarm optimization classification algorithm and its applications. Int J Pattern Recognit Artif Intell 28(2)

    Google Scholar 

  77. Lv L, Wang H, Li X, Xiao X, Zhang L (2014) Multi-swarm particle swarm optimization using opposition-based learning and application in coverage optimization of wireless sensor network. Sensor Lett 12(2):386–391

    Article  Google Scholar 

  78. Magoulas GD, Vrahatis MN, Androulakis GS (1997) On the alleviation of local minima in backpropagation. Nonlinear Anal Theory Methods Appl 30(7):4545–4550

    Article  MATH  Google Scholar 

  79. Manquinho VM, Marques Silva JP, Oliveira AL, Sakallah KA (1997) Branch and bound algorithms for highly constrained integer programs. Technical report, Cadence European Laboratories, Portugal

    Google Scholar 

  80. Mendes R, Kennedy J, Neves J (2004) The fully informed particle swarm: simpler, maybe better. IEEE Trans Evol Comput 8(3):204–210

    Article  Google Scholar 

  81. Mikki SM, Kishk AA (2006) Quantum particle swarm optimization for electromagnetics. IEEE Trans Antennas Propag 54(10):2764–2775

    Article  Google Scholar 

  82. Moustaki E, Parsopoulos KE, Konstantaras I, Skouri K, Ganas I (2013) A first study of particle swarm optimization on the dynamic lot sizing problem with product returns. In: XI Balkan conference on operational research (BALCOR 2013), Belgrade, pp 348–356

    Google Scholar 

  83. Nanda B, Maity D, Maiti DK (2014) Crack assessment in frame structures using modal data and unified particle swarm optimization technique. Adv Struct Eng 17(5):747–766

    Article  Google Scholar 

  84. Nanda B, Maity D, Maiti DK (2014) Modal parameter based inverse approach for structural joint damage assessment using unified particle swarm optimization. Appl Math Comput 242:407–422

    MathSciNet  MATH  Google Scholar 

  85. Neri F, Cotta C (2012) Memetic algorithms and memetic computing optimization: a literature review. Swarm Evol Comput 2:1–14

    Article  Google Scholar 

  86. Olsson AE (ed) (2011) Particle swarm optimization: theory, techniques and applications. Nova Science Pub Inc., New York

    Google Scholar 

  87. Ozcan E, Mohan CK Analysis of a simple particle swarm optimization. In: Intelligent engineering systems through artificial neural networks, vol 8. ASME Press, New York, pp 253–258

    Google Scholar 

  88. Ozcan E, Mohan CK (1999) Particle swarm optimization: surfing the waves. In: Proceedings of the 1999 IEEE international conference on evolutionary computation, Washington, DC, pp 1939–1944

    Google Scholar 

  89. Padhye N, Deb K, Mittal P (2013) Boundary handling approaches in particle swarm optimization. In: Proceedings of seventh international conference on bio-inspired computing: theories and applications (BIC-TA 2012), Gwalior, vol 201, pp 287–298

    Google Scholar 

  90. Pan F, Hu X, Eberhart R, Chen Y (2008) An analysis of bare bones particle swarm. In: Proceedings of the 2008 IEEE swarm intelligence symposium, St. Louis

    Google Scholar 

  91. Pan H, Wang L, Liu B (2006) Particle swarm optimization for function optimization in noisy environment. Appl Math Comput 181(2):908–919

    MathSciNet  MATH  Google Scholar 

  92. Pandremmenou K, Kondi LP, Parsopoulos KE, Bentley ES (2014) Game-theoretic solutions through intelligent optimization for efficient resource management in wireless visual sensor networks. Signal Process Image Commun 29(4):472–493

    Article  Google Scholar 

  93. Parasuraman D (2012) Handbook of particle swarm optimization: concepts, principles & applications. Auris reference, Nottingham

    Google Scholar 

  94. Parrott D, Li X (2006) Locating and tracking multiple dynamic optima by a particle swarm model using speciation. IEEE Trans Evol Comput 10(4):440–458

    Article  Google Scholar 

  95. Parsopoulos KE, Plagianakos VP, Magoulas GD, Vrahatis MN (2001) Objective function “stretching” to alleviate convergence to local minima. Nonlinear Anal Theory Methods Appl 47(5):3419–3424

    Article  MathSciNet  MATH  Google Scholar 

  96. Parsopoulos KE, Tasoulis DK, Vrahatis MN (2004) Multiobjective optimization using parallel vector evaluated particle swarm optimization. In: Hamza MH (ed) Proceedings of the IASTED 2004 international conference on artificial intelligence and applications (AIA 2004), Innsbruck, vol 2. IASTED/ACTA Press, pp 823–828

    Google Scholar 

  97. Parsopoulos KE, Vrahatis MN (2001) Particle swarm optimizer in noisy and continuously changing environments. In: Hamza MH (ed) Artificial intelligence and soft computing. IASTED/ACTA Press, Anaheim, pp 289–294

    Google Scholar 

  98. Parsopoulos KE, Vrahatis MN (2002) Particle swarm optimization method for constrained optimization problems. In: Sincak P, Vascak J, Kvasnicka V, Pospichal J (eds) Intelligent technologies-theory and application: new trends in intelligent technologies. Frontiers in artificial intelligence and applications, vol 76. IOS Press, pp 214–220

    Google Scholar 

  99. Parsopoulos KE, Vrahatis MN (2002) Particle swarm optimization method in multiobjective problems. In: Proceedings of the ACM 2002 symposium on applied computing (SAC 2002), Madrid. ACM Press, pp 603–607

    Chapter  Google Scholar 

  100. Parsopoulos KE, Vrahatis MN (2002) Recent approaches to global optimization problems through particle swarm optimization. Nat Comput 1(2-3):235–306

    Article  MathSciNet  MATH  Google Scholar 

  101. Parsopoulos KE, Vrahatis MN (2004) On the computation of all global minimizers through particle swarm optimization. IEEE Trans Evol Comput 8(3):211–224

    Article  Google Scholar 

  102. Parsopoulos KE, Vrahatis MN (2004) UPSO: a unified particle swarm optimization scheme. In: Proceedings of the international conference of computational methods in sciences and engineering (ICCMSE 2004). Lecture series on computer and computational sciences, vol 1. VSP International Science Publishers, Zeist, pp 868–873

    Google Scholar 

  103. Parsopoulos KE, Vrahatis MN (2006) Studying the performance of unified particle swarm optimization on the single machine total weighted tardiness problem. In: Sattar A, Kang BH (eds) Lecture notes in artificial intelligence (LNAI), vol 4304. Springer, Berlin/New York, pp 760–769

    Google Scholar 

  104. Parsopoulos KE, Vrahatis MN (2007) Parameter selection and adaptation in unified particle swarm optimization. Math Comput Model 46(1–2):198–213

    Article  MathSciNet  MATH  Google Scholar 

  105. Parsopoulos KE, Vrahatis MN (2008) Multi-objective particles swarm optimization approaches. In Bui LT, Alam S (eds) Multi-objective optimization in computational intelligence: theory and practice. Premier reference source, chapter 2. Information Science Reference (IGI Global), Hershey, pp 20–42

    Chapter  Google Scholar 

  106. Parsopoulos KE, Vrahatis MN (2010) Particle swarm optimization and intelligence: advances and applications. Inf Sci Publ (IGI Glob)

    Google Scholar 

  107. Petalas YG, Parsopoulos KE, Vrahatis MN (2007) Entropy-based memetic particle swarm optimization for computing periodic orbits of nonlinear mappings. In: IEEE 2007 congress on evolutionary computation (IEEE CEC 2007), Singapore. IEEE Press, pp 2040–2047

    Chapter  Google Scholar 

  108. Petalas YG, Parsopoulos KE, Vrahatis MN (2007) Memetic particle swarm optimization. Ann Oper Res 156(1):99–127

    Article  MathSciNet  MATH  Google Scholar 

  109. Petalas YG, Parsopoulos KE, Vrahatis MN (2009) Improving fuzzy cognitive maps learning through memetic particle swarm optimization. Soft Comput 13(1):77–94

    Article  Google Scholar 

  110. Piperagkas GS, Georgoulas G, Parsopoulos KE, Stylios CD, Likas CA (2012) Integrating particle swarm optimization with reinforcement learning in noisy problems. In: Genetic and evolutionary computation conference 2012 (GECCO 2012), Philadelphia. ACM, pp 65–72

    Google Scholar 

  111. Piperagkas GS, Konstantaras I, Skouri K, Parsopoulos KE (2012) Solving the stochastic dynamic lot-sizing problem through nature-inspired heuristics. Comput Oper Res 39(7):1555–1565

    Article  MathSciNet  MATH  Google Scholar 

  112. Poli R (2008) Analysis of the publications on the applications of particle swarm optimisation. J Artif Evol Appl 2008(3):1–10

    Google Scholar 

  113. Poli R (2008) Dynamic and stability of the sampling distribution of particle swarm optimisers via moment analysis. J Artif Evol Appl 2008(3):10010

    Google Scholar 

  114. Poli R, Kennedy J, Blackwell T (2007) Particle swarm optimization. Swarm Intell 1(1):33–57

    Article  Google Scholar 

  115. Poli R, Langdon WB (2007) Markov chain models of bare-bones particle swarm optimizers. ACM, New York, pp 142–149

    Google Scholar 

  116. Pookpunt S, Ongsakul W (2013) Optimal placement of wind turbines within wind farm using binary particle swarm optimization with time-varying acceleration coefficients. Renew Energy 55:266–276

    Article  Google Scholar 

  117. Potter MA, De Jong K (2000) Cooperative coevolution: an architecture for evolving coadapted subcomponents. Evol Comput 8(1):1–29

    Article  Google Scholar 

  118. Qu BY, Liang JJ, Suganthan PN (2012) Niching particle swarm optimization with local search for multi-modal optimization. Inf Sci 197:131–143

    Article  Google Scholar 

  119. Rada-Vilela J, Johnston M, Zhang M (2014) Population statistics for particle swarm optimization: resampling methods in noisy optimization problems. Swarm Evol Comput 17:37–59

    Article  Google Scholar 

  120. Rahnamayan RS, Tizhoosh HR, Salama MMA (2008) Opposition-based differential evolution. IEEE Trans Evol Comput 12(1):64–79

    Article  Google Scholar 

  121. Reyes-Sierra M, Coello Coello CA (2006) Multi-objective particle swarm optimizers: a survey of the state-of-the-art. Int J Comput Intell Res 2(3):287–308

    MathSciNet  Google Scholar 

  122. Rezaee Jordehi A, Jasni J (2013) Parameter selection in particle swarm optimisation: a survey. J Exp Theor Artif Intell 25(4):527–542

    Article  Google Scholar 

  123. Rini DP, Shamsuddin SM, Yuhaniz SS (2014) Particle swarm optimization: technique, system and challenges. Int J Comput Appl 14(1):19–27

    Google Scholar 

  124. Schmitt M, Wanka R (2015) Particle swarm optimization almost surely finds local optima. Theor Comput Sci Part A 561:57–72

    Article  MathSciNet  MATH  Google Scholar 

  125. Schoeman IL, Engelbrecht AP (2010) A novel particle swarm niching technique based on extensive vector operations. Nat Comput 9(3):683–701

    Article  MathSciNet  MATH  Google Scholar 

  126. Schwefel H-P (1995) Evolution and optimum seeking. Wiley, New York

    MATH  Google Scholar 

  127. Sedighizadeh D, Masehian E (2009) Particle swarm optimization methods, taxonomy and applications. Int J Comput Theory Eng 1(5):486–502

    Article  Google Scholar 

  128. Shi Y, Eberhart RC (1998) A modified particle swarm optimizer. In: Proceedings IEEE conference on evolutionary computation, Anchorage. IEEE Service Center, pp 69–73

    Google Scholar 

  129. Skokos Ch, Parsopoulos KE, Patsis PA, Vrahatis MN (2005) Particle swarm optimization: an efficient method for tracing periodic orbits in 3D galactic potentials. Mon Not R Astron Soc 359:251–260

    Article  Google Scholar 

  130. Souravlias D, Parsopoulos KE (2016) Particle swarm optimization with neighborhood-based budget allocation. Int J Mach Learn Cybern 7(3):451–477. Springer

    Google Scholar 

  131. Storn R, Price K (1997) Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11:341–359

    Article  MathSciNet  MATH  Google Scholar 

  132. Suganthan PN (1999) Particle swarm optimizer with neighborhood operator. In: Proceedings of the IEEE congress on evolutionary computation, Washington, DC, pp 1958–1961

    Google Scholar 

  133. Sun J, Feng B, Xu W (2004) Particle swarm optimization with particles having quantum behavior. In: Proceedings of the IEEE congress on evolutionary computation 2004 (IEEE CEC’04), Portland (OR), pp 325–331

    Google Scholar 

  134. Sun J, Lai C-H, Wu X-J (2011) Particle swarm optimisation: classical and quantum perspectives. CRC Press, Boca Raton

    MATH  Google Scholar 

  135. Sun J, Xu W, Feng B (2004) A global search strategy for quantum-behaved particle swarm optimization. In: Proceedings of the 2004 IEEE conference on cybernetics and intelligent systems, Singapore, pp 111–116

    Google Scholar 

  136. Sun S, Li J (2014) A two-swarm cooperative particle swarms optimization. Swarm Evol Comput 15:1–18

    Article  Google Scholar 

  137. Sutton AM, Whitley D, Lunacek M, Howe A (2006) PSO and multi-funnel landscapes: how cooperation might limit exploration. In: Proceedings of the 8th annual conference on genetic and evolutionary computation (GECCO’06), Seattle, pp 75–82

    Google Scholar 

  138. Tasgetiren F, Chen A, Gencyilmaz G, Gattoufi S (2009) Smallest position value approach. Stud Comput Intell 175:121–138

    MATH  Google Scholar 

  139. Tasgetiren MF, Liang Y-C, Sevkli M, Gencyilmaz G (2006) Particle swarm optimization and differential evolution for the single machine total weighted tardiness problem. Int J Prod Res 44(22):4737–4754

    Article  MATH  Google Scholar 

  140. Tasgetiren MF, Liang Y-C, Sevkli M, Gencyilmaz G (2007) A particle swarm optimization algorithm for makespan and total flowtime minimization in the permutation flowshop sequencing problem. Eur J Oper Res 177(3):1930–1947

    Article  MATH  Google Scholar 

  141. Thangaraj R, Pant M, Abraham A, Bouvry P (2011) Particle swarm optimization: hybridization perspectives and experimental illustrations. Appl Math Comput 217(12):5208–5226

    MATH  Google Scholar 

  142. Törn A, Žilinskas A (1989) Global optimization. Springer, Berlin

    Book  MATH  Google Scholar 

  143. Trelea IC (2003) The particle swarm optimization algorithm: convergence analysis and parameter selection. Inf Process Lett 85:317–325

    Article  MathSciNet  MATH  Google Scholar 

  144. Tsai H-C (2010) Predicting strengths of concrete-type specimens using hybrid multilayer perceptrons with center-unified particle swarm optimization. Expert Syst Appl 37(2): 1104–1112

    Article  Google Scholar 

  145. Van den Bergh F, Engelbrecht AP (2002) A new locally convergent particle swarm optimiser. In: Proceedings of the 2002 IEEE international conference on systems, man and cybernetics, vol 3, pp 94–99

    Google Scholar 

  146. Van den Bergh F, Engelbrecht AP (2004) A cooperative approach to particle swarm optimization. IEEE Trans Evol Comput 8(3):225–239

    Article  Google Scholar 

  147. Van den Bergh F, Engelbrecht AP (2006) A study of particle swarm optimization particle trajectories. Inf Sci 176:937–971

    Article  MathSciNet  MATH  Google Scholar 

  148. Voglis C, Parsopoulos KE, Lagaris IE (2012) Particle swarm optimization with deliberate loss of information. Soft Comput 16(8):1373–1392

    Article  Google Scholar 

  149. Voglis C, Parsopoulos KE, Papageorgiou DG, Lagaris IE, Vrahatis MN (2012) MEMPSODE: a global optimization software based on hybridization of population-based algorithms and local searches. Comput Phys Commun 183(5):1139–1154

    Article  Google Scholar 

  150. Wang H, Moon I, Yang S, Wang D (2012) A memetic particle swarm optimization algorithm for multimodal optimization problems. Inf Sci 197:38–52

    Article  Google Scholar 

  151. Wang H, Wu Z, Rahnamayan S, Liu Y, Ventresca M (2011) Enhancing particle swarm optimization using generalized opposition-based learning. Inf Sci 181(20):4699–4714

    Article  MathSciNet  Google Scholar 

  152. Wang H, Zhao X, Wang K, Xia K, Tu X (2014) Cooperative velocity updating model based particle swarm optimization. Appl Intell 40(2):322–342

    Article  Google Scholar 

  153. Wang Y-J, Zhang J-S (2008) A new constructing auxiliary function method for global optimization. Math Comput Modell 47(11–12):1396–1410

    Article  MathSciNet  MATH  Google Scholar 

  154. Wu H, Geng J, Jin R, Qiu J, Liu W, Chen J, Liu S (2009) An improved comprehensive learning particle swarm optimization and its application to the semiautomatic design of antennas. IEEE Trans Antennas Propag 57(10 PART 2):3018–3028

    Google Scholar 

  155. Xianfeng Y, Li LS (2014) Dynamic adjustment strategies of inertia weight in particle swarm optimization algorithm. Int J Control Autom 7(5):353–364

    Article  Google Scholar 

  156. Xu W, Duan BY, Li P, Hu N, Qiu Y (2014) Multiobjective particle swarm optimization of boresight error and transmission loss for airborne radomes. IEEE Trans Antennas Propag 62(11):5880–5885

    Article  MathSciNet  MATH  Google Scholar 

  157. Xue B, Zhang M, Browne WN (2014) Particle swarm optimisation for feature selection in classification: novel initialisation and updating mechanisms. Appl Soft Comput J 18: 261–276

    Article  Google Scholar 

  158. Yang J, Zhang H, Ling Y, Pan C, Sun W (2014) Task allocation for wireless sensor network using modified binary particle swarm optimization. IEEE Sens J 14(3):882–892

    Article  Google Scholar 

  159. Yang J-M, Chen Y-P, Horng J-T, Kao C-Y (1997) Applying family competition to evolution strategies for constrained optimization. Lecture notes in mathematics, vol 1213. Springer, Berlin/New York, pp 201–211

    Google Scholar 

  160. Yen GG, Leong WF (2009) Dynamic multiple swarms in multiobjective particle swarm optimization. IEEE Trans Syst Man Cybern Part A Syst Hum 39(4):890–911

    Article  Google Scholar 

  161. Yu X, Zhang X (2014) Enhanced comprehensive learning particle swarm optimization. Appl Math Comput 242:265–276

    MathSciNet  MATH  Google Scholar 

  162. Zambrano-Bigiarini M, Clerc M, Rojas R (2013) Standard particle swarm optimisation 2011 at CEC-2013: a baseline for future PSO improvements. In: 2013 IEEE congress on evolutionary computation, Cancún, pp 2337–2344

    Google Scholar 

  163. Zhang Q, Wang Z, Tao F, Sarker BR, Cheng L (2014) Design of optimal attack-angle for RLV reentry based on quantum particle swarm optimization. Adv Mech Eng 6:352983

    Article  Google Scholar 

  164. Zhang Y, Gong D, Hu Y, Zhang W (2015) Feature selection algorithm based on bare bones particle swarm optimization. Neurocomputing 148:150–157

    Article  Google Scholar 

  165. Zhang Y, Gong D-W, Ding Z (2012) A bare-bones multi-objective particle swarm optimization algorithm for environmental/economic dispatch. Inf Sci 192:213–227

    Article  Google Scholar 

  166. Zhang Y, Gong D-W, Sun X-Y, Geng N (2014) Adaptive bare-bones particle swarm optimization algorithm and its convergence analysis. Soft Comput 18(7):1337–1352

    Article  MATH  Google Scholar 

  167. Zhao F, Li G, Yang C, Abraham A, Liu H (2014) A human-computer cooperative particle swarm optimization based immune algorithm for layout design. Neurocomputing 132: 68–78

    Article  Google Scholar 

  168. Zhao J, Lv L, Fan T, Wang H, Li C, Fu P (2014) Particle swarm optimization using elite opposition-based learning and application in wireless sensor network. Sens Lett 12(2): 404–408

    Article  Google Scholar 

  169. Zheng Y-J, Ling H-F, Xue J-Y, Chen S-Y (2014) Population classification in fire evacuation: a multiobjective particle swarm optimization approach. IEEE Trans Evol Comput 18(1):70–81

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantinos E. Parsopoulos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Parsopoulos, K.E. (2018). Particle Swarm Methods. In: Martí, R., Pardalos, P., Resende, M. (eds) Handbook of Heuristics. Springer, Cham. https://doi.org/10.1007/978-3-319-07124-4_22

Download citation

Publish with us

Policies and ethics