Skip to main content

Complex Biological Systems

  • Reference work entry
  • First Online:
Handbook of Science and Technology Convergence
  • 2515 Accesses

Abstract

Biological entities range in scale and complexity from the simplest viruses to multicellular organisms with specialized cells, tissues, and organs. Within a cell of any organism, there are an enormous number of biomolecular complexes that perform physical and chemical tasks with remarkable speed and fidelity. The goals in many nanoscale engineering applications mirror the major challenges that Nature has overcome in the engineering of biomolecular systems. As such, there exist some basic paradigms of biological design that can either be mimicked or exploited for nanoengineering applications. In this chapter, several paradigms for biological control at the nanoscale are identified, and several key examples are leveraged to identify how these ideas can be used in a range of engineered systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baneyx F (1999) Recombinant protein expression in Escherichia coli. Curr Opin Biotechnol 10(5):411–421

    Article  Google Scholar 

  • Bustamante C, Bryant Z, Smith SB (2003) Ten years of tension: single-molecule DNA mechanics. Nature 421(6921):423–427

    Article  Google Scholar 

  • Cordella N, Lampo TJ, Melosh N, Spakowitz AJ (2015) Membrane indentation triggers clathrin lattice reorganization and fluidization. Soft Matter 11(3):439–448

    Article  Google Scholar 

  • de Gennes P-G (1971) Reptation of a polymer chain in the presence of fixed obstacles. J Chem Phys 55(2):572–579

    Article  Google Scholar 

  • Doi M, Edwards SF (1999) The theory of polymer dynamics. Oxford University Press, New York

    Google Scholar 

  • Euler L. Elementa doctrine solidorum. Novi comm. acad. scientiarum imperialis petropolitanae 4:109–160, 1752–1753

    Google Scholar 

  • Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, Ithaca

    Google Scholar 

  • Greenleaf WJ, Woodside MT, Block SM (2007) High-resolution, single-molecule measurements of biomolecular motion. Annu Rev Biophys Biomol Struct 36:171

    Article  Google Scholar 

  • Karunakaran A (2007) Single molecule studies of a viral DNA packaging motor. University of California, Berkeley

    Google Scholar 

  • Langer R, Tirrell DA (2004) Designing materials for biology and medicine. Nature 428(6982):487–492

    Article  Google Scholar 

  • Liu W, Brock A, Chen S, Chen S, Schultz PG (2007) Genetic incorporation of unnatural amino acids into proteins in mammalian cells. Nat Methods 4(3):239–244

    Article  Google Scholar 

  • Marko JF (2008) Micromechanical studies of mitotic chromosomes. Chromosome Res 16(3):469–497

    Article  MathSciNet  Google Scholar 

  • Marras AE, Zhou L, Hai-Jun S, Castro CE (2015) Programmable motion of DNA origami mechanisms. Proc Natl Acad Sci 112(3):713–718

    Article  Google Scholar 

  • Park PJ (2009) Chip-seq: advantages and challenges of a maturing technology. Nat Rev Genet 10(10):669–680

    Article  Google Scholar 

  • Pavani SRP, Thompson MA, Biteen JS, Lord SJ, Liu N, Twieg RJ, Rafael P, Moerner WE (2009) Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function. Proc Natl Acad Sci 106(9):2995–2999

    Article  Google Scholar 

  • Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152(5):1173–1183

    Article  Google Scholar 

  • Reece RJ, Maxwell A, Wang JC (1991) DNA gyrase: structure and function. Crit Rev Biochem Mol Biol 26(3–4):335–375

    Article  Google Scholar 

  • Rothemund PWK (2006) Folding DNA to create nanoscale shapes and patterns. Nature 440(7082):297–302

    Article  Google Scholar 

  • Schoen AP, Schoen DT, Huggins KNL, Arunagirinathan MA, Heilshorn SC (2011) Template engineering through epitope recognition: a modular, biomimetic strategy for inorganic nanomaterial synthesis. J Am Chem Soc 133(45):18202–18207

    Article  Google Scholar 

  • Seeman NC, Belcher AM (2002) Emulating biology: building nanostructures from the bottom up. Proc Natl Acad Sci U S A 99(Suppl 2):6451–6455

    Article  Google Scholar 

  • Shtengel G, Galbraith JA, Galbraith CG, Lippincott-Schwartz J, Gillette JM, Manley S, Sougrat R, Waterman CM, Kanchanawong P, Davidson MW et al (2009) Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure. Proc Natl Acad Sci 106(9):3125–3130

    Article  Google Scholar 

  • Smith DE, Tans SJ, Smith SB, Grimes S, Anderson DL, Bustamante C (2001) The bacteriophage Ï•29 portal motor can package DNA against a large internal force. Nature 413(6857):748–752

    Article  Google Scholar 

  • Wang JC, Giaever GN (1988) Action at a distance along a DNA. Science 240(4850):300–304

    Article  Google Scholar 

  • Weiner S, De Yoreo JJ, Dove PM (2003) Biomineralization. Mineralogical Society of America

    Google Scholar 

  • White JH (1969) Self-linking and the Gauss integral in higher dimensions. Am J Math 91:693–728

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew J. Spakowitz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Spakowitz, A.J. (2016). Complex Biological Systems. In: Bainbridge, W., Roco, M. (eds) Handbook of Science and Technology Convergence. Springer, Cham. https://doi.org/10.1007/978-3-319-07052-0_81

Download citation

Publish with us

Policies and ethics