Advertisement

Phonon-Induced Thermal Properties

  • Karl W. Böer
  • Udo W. PohlEmail author
Living reference work entry

Latest version View entry history

  • 4 Downloads

Abstract

Phonons are responsible for all thermal properties of a solid, such as its heat content and transport. The anharmonic part of lattice oscillations causes thermal expansion. All these are integral contributions of the phonon spectrum; only at low temperatures, where part of the spectrum can be frozen-out, do they become partially spectrum selective. Thermal conductivity is determined by various mechanisms of phonon scattering.

Keywords

Debye specific heat Dulong-Petit law Einstein specific heat Heat capacity Phonon scattering Specific heat Thermal conductivity Thermal expansion Thermal transport 

References

  1. Adilov KA, Vakhabov DA, Zakirov AS, Igamberdyev KHT, Mamadalimov AT, Tursunov SHO, Khabibullaev PK (1986) Fiz Tverd Tela 28:1918 (The heat conductivity of nickel-doped n- and p-type silicon, in Russian)Google Scholar
  2. Afromowitz MA (1973) Thermal conductivity of Ga1-xAlxAs alloys. J Appl Phys 44:1292CrossRefADSGoogle Scholar
  3. Akkermans E, Maynard R (1985) Weak localization and anharmonicity of phonons. Phys Rev B 32:7850CrossRefADSGoogle Scholar
  4. Almond DP, Tam AC (1996) Photothermal science and techniques. Chapman & Hall, LondonGoogle Scholar
  5. Amer NM (1987) Characterization of optical and transport properties of semiconductors: a photothermal approach. Proc SPIE 794:11CrossRefADSGoogle Scholar
  6. Anderson CL, Crowell CR (1972) Threshold energies for electron–hole pair production by impact ionization in semiconductors. Phys Rev B 5:2267CrossRefADSGoogle Scholar
  7. Anderson AC, Wolfe JP (eds) (1986) Phonon scattering in condensed matter, vol V. Springer, BerlinGoogle Scholar
  8. Barron THK (1957) Grüneisen parameters for the equation of state of solids. Ann Phys (NY) 1:77CrossRefADSGoogle Scholar
  9. Berman R (1976) Thermal conductivity in solids. Claredon Press, OxfordGoogle Scholar
  10. Bodnar IV, Orlova NS (1985) X-ray study of the thermal expansion anisotropy in AgGaS2 and AgInS2 compounds over the temperature range from 80 to 650 K. Phys Stat Sol A 91:503CrossRefADSGoogle Scholar
  11. Cahill DG, Ford WK, Goodson KE, Mahan GD, Majumdar A, Maris HJ, Merlin R, Phillot SR (2003) Nanoscale thermal transport. J Appl Phys 93:793CrossRefADSGoogle Scholar
  12. Capinski WS, Maris HJ, Ruf T, Cardona M, Ploog K, Katzer DS (1999) Thermal-conductivity measurements of GaAs/AlAs superlattices using a picosecond optical pump-and-probe technique. Phys Rev B 59:8105CrossRefADSGoogle Scholar
  13. Carlson RO, Slack GA, Silverman SJ (1965) Thermal conductivity of GaAs and GaAs1-xPx laser semiconductors. J Appl Phys 36:505CrossRefADSGoogle Scholar
  14. Casimir HBG (1938) Note on the conduction of heat in crystals. Physica 5:495CrossRefADSGoogle Scholar
  15. Challis LJ, Rampton VW, Watt AFG (1975) Phonon scattering in solids. Plenum Press, New YorkGoogle Scholar
  16. Chen G (1998) Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices. Phys Rev B 57:14958CrossRefADSGoogle Scholar
  17. Chen G, Tien CL (1993) Thermal conductivities of quantum well structures. J Thermophys Heat Transf 7:311CrossRefADSGoogle Scholar
  18. Childs GE, Erick LJ, Powell RL (1973) Thermal conductivity of solids at room temperature and below, a review and compilation of literature. National Bureau of Standards Monograph, vol 131. National Bureau of Standards, Washington, DCCrossRefGoogle Scholar
  19. Daniels WB (1962) Low-temperature limit of Grüneisen’s gamma of germanium and silicon. Phys Rev Lett 8:3CrossRefADSGoogle Scholar
  20. de Goër AM, Doulat J, Dreyfus B (1965) Conductibilité thermique de l’oxyde de béryllium de 1.5 a 300 K. J Nucl Mater 17:159 (Thermal conductivity of beryllium oxide from 1.5 to 300 K, in French)CrossRefADSGoogle Scholar
  21. de Goër AM, Locatelli M, Nicolau IF (1982) Low-temperature heat transport in α-HgI2 single crystals. J Phys Chem Solids 43:311CrossRefGoogle Scholar
  22. Debernardi A, Baroni S, Molinari E (1995) Anharmonic phonon lifetimes in semiconductors from density-functional perturbation theory. Phys Rev Lett 75:1819CrossRefADSGoogle Scholar
  23. Debye P (1912) Zur Theorie der spezifischen Wärmen. Ann Phys (Lpz) 39:789 (On the theory of the specific heat, in German)CrossRefADSzbMATHGoogle Scholar
  24. Debye P (1914) Vorträge über kinetische Gastheorie. Teubner Verlag, Berlin (Lectures on the kinetic gas theory, in German)Google Scholar
  25. Drabble JR, Goldsmid HJ (1961) Thermal conduction in semiconductors. Pergamon Press, New YorkzbMATHGoogle Scholar
  26. Dulong PL, Petit AT (1819) Sur quelques points importants de la theorie de la chaleur. Ann Chim Phys 10:399 (On some important points of the theory of heat, in French)Google Scholar
  27. Einstein A (1907) Die Plancksche Theorie der Strahlung und die Theorie der spezifischen Wärme. Ann Phys (Lpz.) 22:180 and 800 (“Berichtigung”). (Planck’s theory of radiation and the theory of specific heat, in German)Google Scholar
  28. Garg J, Chen G (2013) Minimum thermal conductivity in superlattices: a first-principles formalism. Phys Rev B 87:140302CrossRefADSGoogle Scholar
  29. Geballe TH, Hull GW (1958) Isotopic and other types of thermal resistance in germanium. Phys Rev 110:773CrossRefADSGoogle Scholar
  30. Glassbrenner CJ, Slack GA (1964) Thermal conductivity of silicon and germanium from 3 K to the melting point. Phys Rev 134:A1058CrossRefADSGoogle Scholar
  31. Grüneisen E (1926) Handbuch der Physik, vol 10. Springer, Berlin, Handbook of Physics, in GermanGoogle Scholar
  32. Hiki Y (1981) Higher order elastic constants of solids. Ann Rev Mater Sci 11:51CrossRefADSGoogle Scholar
  33. Holland MG (1964) Phonon scattering in doped GaAs from magnetothermal conductivity studies. In: Hulin M (ed) Proceedings of 7th international conference on the physics of semiconductors, Dunod, pp 713–717Google Scholar
  34. Igamberdiev KT, Mamadalimov AT, Khabibullaev PK (1983) Izv Akad Nauk Uzb SSR, Ser Fiz Mat 2:39 (in Russian)Google Scholar
  35. Joos G (1945) Lehrbuch der Theoretischen Physik. Akad. Verl. Gesellschaft, Leipzig (Textbook of Theoretical Physics, in German)zbMATHGoogle Scholar
  36. Kittel C (1949) Interpretation of the thermal conductivity of glasses. Phys Rev 75:972CrossRefADSGoogle Scholar
  37. Kittel C (1986) Introduction to solid state physics. Wiley, New YorkzbMATHGoogle Scholar
  38. Klemens PG (1955) The scattering of low-frequency lattice waves by static imperfections. Proc Phys Soc A 68:1113CrossRefADSzbMATHGoogle Scholar
  39. Klemens PG (1958) Thermal conductivity and lattice vibrational modes. In: Seitz F, Turnbull D (eds) Solid state physics, vol 7. Academic Press, New YorkGoogle Scholar
  40. Klemens PG (1986) Thermal expansion of composites. Int J Thermophys 7:197CrossRefADSGoogle Scholar
  41. Klemens PG, Chu TK (1976) Thermal conductivity. Plenum Press, New York, pp 1–98Google Scholar
  42. Klitsner T, Pohl RO (1987) Phonon scattering at silicon crystal surfaces. Phys Rev B 36:6551CrossRefADSGoogle Scholar
  43. Knaak W, Hauß T, Kummrow M, Meißner M (1986) Thermalization of ballistic phonon pulses in dielectric crystals below 1 K using time resolved thermometry. In: Anderson AC, Wolfe JP (eds) Phonon scattering in condensed matter, vol V. Springer, Berlin, p 174Google Scholar
  44. Kumar GS, Vandersande JW, Klistner T, Pohl RO, Slack GA (1985) Low-temperature heat transport by charge carriers in doped semiconductors. Phys Rev B 31:2157CrossRefADSGoogle Scholar
  45. Landau LD, Lifshitz EM (1958) Statistical physics (English translation by Peierls E, Peierls RF). Addison-Wesley, Cambridge, MAGoogle Scholar
  46. Leibfried G, Schlömann E (1963) Wärmeleitung in elektrisch isolierenden Kristallen. Nachr Akad Wiss Göttingen Kl (II)a 4:71 (1954); English translation AEC-tr-5892, 1 (1963). (Heat conduction in electrically insulating crystals, in German)Google Scholar
  47. Lencer D, Salinga M, Wuttig M (2011) Design rules for phase-change materials in data storage applications. Adv Mater 23:2030CrossRefGoogle Scholar
  48. Logachev YA, Vasilev LN (1973) Temperature dependence of the phonon thermal conductivity of Ge and Si and AIIIBV compounds at high temperatures. Fiz. Tverdogo Tela 15:1612Google Scholar
  49. Luk’yanov AY, Ral’chenko VG, Khomich AV, Serdtsev EV, Volkov PV, Savel’ev AV, Konov VI (2008) Measurement of optical absorption in polycrystalline CVD diamond plates by the phase photothermal method at a wavelength of 10.6 μm. Quantum Electron 38:1171CrossRefADSGoogle Scholar
  50. Martienssen W, Warlimont H (2005) Springer handbook of condensed matter and materials data. Springer, BerlinCrossRefGoogle Scholar
  51. Matsumoto DS, Anderson AC (1981) Effect of crosslinking on the low-temperature behavior of polybutadiene. J Non-cryst Solids 44:171CrossRefADSGoogle Scholar
  52. Mitra SS, Massa ME (1982) Lattice vibrations in semiconductors. In: Moss TS, Paul W (eds) Handbook on semiconductors, vol 1: Band theory and transport properties. North Holland, Amsterdam, pp 81–192Google Scholar
  53. Namjoshi KV, Mitra SS, Vetelino JF (1971) Simple shell-model calculation of lattice dynamics and thermal expansion of alkali halides. Phys Rev B 3:4398CrossRefADSGoogle Scholar
  54. Novikova SI (1966) Thermal expansion. In: Willardson RK, Beer AC (eds) Semiconductors and semimetals, vol 2. Academic Press, New York, pp 33–48Google Scholar
  55. Orbach R (1984) Dynamics of fractal structures. J Stat Phys 36:735CrossRefADSMathSciNetGoogle Scholar
  56. Parrott JE, Stuckes AD (1975) Thermal conductivity of solids. Pion, LondonGoogle Scholar
  57. Pässler R (2011) Non-Debye behaviours of heat capacities of cubic II–VI materials. J Phys Chem Sol 72:1296CrossRefADSGoogle Scholar
  58. Patel CKN, Tam AC (1981) Pulsed optoacoustic spectroscopy of condensed matter. Rev Mod Phys 53:517CrossRefADSGoogle Scholar
  59. Peierls RE (1929) Zur kinetischen Theorie der Wärmeleitung in Kristallen. Ann Phys (Lpz) 3:1055 (On the kinetic theory of thermal conductivity in crystals, in German)CrossRefADSzbMATHGoogle Scholar
  60. Peierls RE (1955) Quantum theory of solids. University Press, OxfordzbMATHGoogle Scholar
  61. Pennington DM, Harris CB (1992) Dynamics of photothermal surface expansion and diffusivity using laser-induced holographic gratings. IEEE J Quantum Electron 28:2523CrossRefADSGoogle Scholar
  62. Phillips WA (1973) Tunneling states and the low-temperature thermal expansion of glasses. J Low Temp Phys 11:757CrossRefADSGoogle Scholar
  63. Pohl RO, Love WF, Stevens RB (1974) Lattice vibrations in non-crystalline solids. In: Stuke J, Brenig W (eds) Proceedings of 5th international conference on amorphous and liquid semiconductors. Taylor and Francis, London, p 1121Google Scholar
  64. Radhakrishnan V, Roy KP, Sharma PC (1982) Proc Nucl Phys Solid State Phys Symp 25C:314Google Scholar
  65. Rosencwaig A (1980) Photoacoustics and photoacoustic spectroscopy. Wiley, ChichesterGoogle Scholar
  66. Rowe DM, Bhandari CM (1986) Preparation and thermal conductivity of doped semiconductors. Prog Crystal Growth Charact 13:233CrossRefGoogle Scholar
  67. Roy R, Agrawal DK (1985) Successful design of new very low thermal expansion ceramics. Mater Res Soc Symp Proc 40:83CrossRefGoogle Scholar
  68. Schirmacher W (2006) Thermal conductivity of glassy materials and the “boson peak”. Europhys Lett 73:892Google Scholar
  69. Simkin MV, Mahan GD (2000) Minimum thermal conductivity of superlattices. Phys Rev Lett 84:927CrossRefADSGoogle Scholar
  70. Slack GA (1979) The thermal conductivity of nonmetallic crystals. In: Seitz F, Turnbull D, Ehrenreich H (eds) Solid state physics, vol 34. Academic Press, New York, pp 1–71Google Scholar
  71. Smith RA (1978) Semiconductors. Cambridge University Press, CambridgezbMATHGoogle Scholar
  72. Soma T, Sato J, Matsuo H (1982) Thermal expansion coefficient of GaAs and InP. Sol State Commun 42:889CrossRefADSGoogle Scholar
  73. Sproull RL, Moss M, Weinstock H (1959) Effect of dislocations on the thermal conductivity of lithium fluoride. J Appl Phys 30:334CrossRefADSGoogle Scholar
  74. Steigmeier EF (1969) Thermal conductivity of semi-conducting materials. In: Tye RP (ed) Thermal conductivity. Academic Press, London/New YorkGoogle Scholar
  75. Stephens RB (1973) Low-temperature specific heat and thermal conductivity of noncrystalline dielectric solids. Phys Rev B 8:2896CrossRefADSGoogle Scholar
  76. Svenson EC, Brockhouse BN, Rowe JM (1967) Crystal dynamics of copper. Phys Rev 115:619CrossRefADSGoogle Scholar
  77. Tam AC (1986) Applications of photoacoustic sensing techniques. Rev Mod Phys 58:381CrossRefADSGoogle Scholar
  78. Torchia GA, Schinca D, Khaidukov NM, Tocho JO (2002) The luminescent quantum efficiency of Cr3+ ions in Cs2NaAlF6 single crystals. Opt Mater 20:301CrossRefADSGoogle Scholar
  79. Touloukian YS, Liley PE, Saxena SC (1970) Thermal conductivity; nonmetallic liquids and gases. IFI/Plenum Press, New YorkGoogle Scholar
  80. Tritt TM (2004) Thermal conductivity: theory, properties, and applications. Kluwer/Plenum Publishers, New YorkCrossRefGoogle Scholar
  81. Vakhabov DA, Zakirov AS, Igamberdiev KT, Mamadalimov AT, Tursunov SO, Khabibullaev PK (1985) Fiz Tverd Tela 27:3420 (Thermoconductivity and temperature-conductivity of silicon doped with Se and Te. in Russian)Google Scholar
  82. Valentiner S, Wallot J (1915) Über die Abhängigkeit des Ausdehnungskoeffizienten fester Körper von der Temperatur, Ann. Physik 46:837 (On the dependence of the expansion coefficient of solids on the temperature, in German)Google Scholar
  83. Vandersande JW (1980) Phonon scattering by nitrogen aggregates in intermediate type natural diamonds. In: Maris HJ (ed) Phonon scattering in condensed matter. Plenum Press, New York, pp 247–250Google Scholar
  84. Vandersande JW, Pohl RO (1982) Negligible effect of grain boundaries on the thermal conductivity of rocks. Geophys Res Lett 9:820CrossRefADSGoogle Scholar
  85. Vandersande JW, Wood C (1986) The thermal conductivity of insulators and semiconductors. Contemp Phys 27:117CrossRefADSGoogle Scholar
  86. Venkatasubramanian R (2000) Lattice thermal conductivity and phonon localization like behavior in superlattice structures. Phys Rev B 61:3091CrossRefADSGoogle Scholar
  87. Walton D (1967) Scattering of phonons by a square-well potential and the effect of colloids on the thermal conductivity. I. Experimental. Phys Rev 157:720CrossRefADSGoogle Scholar
  88. Waseda Y, Ohta H (1987) Current views on thermal conductivity and diffusivity measurements of oxide melts at high temperature. Sol State Ionics 22:263CrossRefGoogle Scholar
  89. Weißmantel C, Hamann C (1995) Grundlagen der Festkörperphysik. J.A. Barth Verlag, Heidelberg (Fundamentals of Solid State Physics, in German)Google Scholar
  90. White TJ, Davis JH, Walter HU (1975) Thermal expansion and Grüneisen parameters of InBi. J Appl Phys 46:11CrossRefADSGoogle Scholar
  91. Yao T (1987) Thermal properties of AlAs/GaAs superlattices. Appl Phys Lett 51:1798CrossRefADSGoogle Scholar
  92. Yu CC, Freeman JJ (1986) The thermal conductivity and specific heat of glasses. In: Anderson AC, Wolfe JP (eds) Phonon scattering in condensed matter, vol V. Springer, Berlin, p 20Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.NaplesUSA
  2. 2.Institut für Festkörperphysik, EW5-1Technische Universität BerlinBerlinGermany

Personalised recommendations