Skip to main content

Dynamic Processes

  • 325 Accesses

Abstract

When an external parameter such as an electric field or an optical generation rate is changed as a function of time, carriers in the semiconductor respond on this disturbance by a redistribution controlled by relaxation times. Relaxation proceeds by elastic or inelastic scattering with carriers, phonons, defects, or spin momenta, and respective time constants range from femtoseconds to years.

Relaxation of injected carriers is given by the carrier lifetime and related to their diffusion or drift length. Nonthermal excess energy of hot carriers is transferred to the lattice mostly by optical phonons. At high carrier density also plasmons, and at high carrier-generation rates and low lattice temperature, condensation into electron-hole droplets with evaporation into excitons are involved. Optical phonons, excited by fast carriers or by an IR light pulse, relax their momenta by elastic scattering with phonons in the same branch, or by a decay into acoustical phonons.

Relaxation of excitons created by nonresonant optical excitation proceeds by inelastic scattering, eventually yielding radiative recombination for momenta near the zone center. The rise time in the luminescence after pulse excitation is controlled by the balance to uncorrelated electron-hole pairs. Resonantly excited excitons show a fast rise in the coherent regime and an exponential decay with an observed time constant depending on excitation density.

Carrier spin and orbital momenta are coherently aligned by excitation with polarized light. The subsequent relaxation can be detected by the degree of polarization of the radiative recombination. Holes in semiconductors with degenerate valence bands at the zone center have short spin-relaxation times in the sub-ps range; lifting this degeneracy slows relaxation down. Electrons have usually longer spin-relaxation times, limited by various mechanisms. In an exciton with weak electron-hole interaction the spin-relaxation time of the sequential spin flip of electron and hole is given by the slower particle, while at stronger interaction the faster simultaneous spin flip occurs.

This is a preview of subscription content, log in via an institution.

Notes

  1. 1.

    The dielectric relaxation time takes polarization effects in the current after changing the bias into account. In absence of traps this quantity is given by τ σ  = εε 0/σ. Simple polarization effects have a very short time constant; with σ in the 10−4 to 10+2 Ω−1 cm−1 range for typical semiconductors, τ σ is on the order of 10−8 to 10−14 s.

  2. 2.

    When light of sufficient energy is absorbed in a semiconductor, free carriers or excitons are produced; this reduces the bond strength of the lattice atoms from which ionization took place and changes related lattice parameters (i.e., elastic stiffness). The changes observed in mechanical and thermal properties are small, since only a very small fraction of the bonds are involved.

  3. 3.

    Modification of the simple model with parabolic minibands, infinite potential steps, nondegenerate electrons, nonscreening to include degeneracy (insignificant up to 2D densities of 1012 cm−2), slab modes (small effect, see Shah et al. 1985), plasma effects, and screening (less than 40% influence, see Das Sarma and Mason 1985) has shown little effect on the energy transfer.

  4. 4.

    TO phonons can also interact with electrons and are coupled through their deformation potential. They are, however, forbidden to do so with carriers in s-like states (Wiley 1975); such forbidden transitions have a factor of only 3 reduced probability, and are important for holes.

  5. 5.

    The probability of finding an impurity within the volume of the exciton is proportional to the number of unit cells in the excitonic volume (a X/a)3. If impurities are located in the volume of excitons, only bound-exciton recombination is observed. For experiments with GaAs high-purity thick epitaxial layers are used with a residual impurity concentration on the order of only 1012 cm−3, additionally clad by AlGaAs barriers to prevent outdiffusion and surface recombination of optically excited excitons.

  6. 6.

    QW samples with rough interfaces exhibit a large Stokes shift due to fluctuation in the well width. Exciton relaxation to K = 0 is then accompanied by the relaxation of excitons from narrow well regions to regions of larger well width. Luminescence intensity, energy, and shape consequently vary during relaxation in a way depending on the particular sample.

  7. 7.

    In this study the THz radiation was generated from a part of the pump pulse by optical rectification (Sect. 3.1.3 of chapter “Interaction of Light With Solids”) in a ZnTe crystal.

  8. 8.

    Linearly polarized photons are a superposition of these two states.

  9. 9.

    For bulk GaAs a spin-relaxation time of 110 fs was measured for heavy holes (Hilton and Tang 2002).

  10. 10.

    The Larmor frequency is equivalent to the cyclotron frequency for free electrons, with ω c = (2/g)μ L and g as the Landé factor (g factor), which is given for isolated atoms by Eq. 4 of chapter “Magnetic Semiconductors”; for electrons in a semiconductor the g factor is influenced by the spin-orbit splitting of the valence band, and can have substantially different values – see in chapter “Carriers in Magnetic Fields and Temperature Gradients,” Sect. 2.2 and Eq. 53.

References

  • Amand T, Marie X (2008) Exciton spin dynamics in semiconductor quantum wells. In: Dyakonov MI (ed) Spin physics in semiconductors. Springer, Berlin/Heidelberg, pp 55–89

    Chapter  Google Scholar 

  • Amo A, Martín MD, Viña L, Toropov AI, Zhuravlev KS (2006) Interplay of exciton and electron-hole plasma recombination on the photoluminescence dynamics in bulk GaAs. Phys Rev B 73:035205

    Article  ADS  Google Scholar 

  • Andreani CL, Pasquarello A (1990) Accurate theory of excitons in GaAs-Ga1-xAlx quantum wells. Phys Rev B 42:8928

    Article  ADS  Google Scholar 

  • Arya K, Hanke W (1981) Many-body coulomb effects on the gain and absorption line shapes of the electron-hole plasma in GaAs. Phys Rev B 23:2988

    Article  ADS  Google Scholar 

  • Awschalom DD, Samarth N (2002) Optical manipulation, transport, and storage of spin coherence in semiconductors. In: Awschalom DD, Loss D, Samarth N (eds) Semiconductor spintronics and quantum computation. Springer, Berlin, pp 147–193

    Chapter  Google Scholar 

  • Bar-Ad S, Bar-Joseph I (1992) Exciton spin dynamics in GaAs heterostructures. Phys Rev Lett 68:349

    Article  ADS  Google Scholar 

  • Barker JR (1980) Quantum transport theory. In: Ferry DK, Barker JR, Jacoboni C (eds) Physics of nonlinear transport in semiconductors. Plenum Press, New York, pp 126–152

    Google Scholar 

  • Barker JR, Ferry DK (1980) On the physics and modeling of small semiconductor devices I. Solid State Electron Dev 23:519

    Article  ADS  Google Scholar 

  • Barman S, Srivastava GP (2004) Long-wavelength nonequilibrium optical phonon dynamics in cubic and hexagonal semiconductors. Phys Rev B 69:235208

    Article  ADS  Google Scholar 

  • Bauer G (1978) Experimental aspects of hot electron distribution functions. Solid State Electron 21:17

    Article  ADS  Google Scholar 

  • Baumberg JJ, Awschalom DD, Samarth N, Luo H, Furdyna JK (1994) Spin beats and dynamical magnetization in quantum structures. Phys Rev Lett 72:717

    Article  ADS  Google Scholar 

  • Beck M, Hübner J, Oestreich M, Bieker S, Henn T, Kiessling T, Ossau W, Molenkamp LW (2016) Thermodynamic origin of the slow free exciton photoluminescence rise in GaAs. Phys Rev B 93:081204

    Article  ADS  Google Scholar 

  • Bir GL, Aronov AG, Pikus GE (1976) Spin relaxation of electrons due to scattering by holes. Sov Phys JETP 42:705

    ADS  Google Scholar 

  • Brooks H (1955) Theory of the electrical properties of germanium and silicon. Adv Electr Electron Phys 7:85

    Article  Google Scholar 

  • Citrin DS (1993) Radiative lifetimes of excitons in quantum wells: localization and phase-coherence effects. Phys Rev B 47:3832

    Article  ADS  Google Scholar 

  • Collins CL, Yu PY (1984) Generation of nonequilibrium optical phonons in GaAs and their application in studying intervalley electron-phonon scattering. Phys Rev B 30:4501

    Article  ADS  Google Scholar 

  • Conwell EM (1982) Transport: the Boltzmann equation. In: Moss TS, Paul W (eds) Handbook of semiconductors, vol 1. Band theory and transport properties. North Holland Publ, Amsterdam, pp 513–561

    Google Scholar 

  • Damen TC, Viña L, Cunningham JE, Shah J, Sham LJ (1991a) Subpicosecond spin relaxation dynamics of excitons and free carriers in GaAs quantum wells. Phys Rev Lett 67:3432

    Article  ADS  Google Scholar 

  • Damen TC, Leo K, Shah J, Cunningham JE (1991b) Spin relaxation and thermalization of excitons in GaAs quantum wells. Appl Phys Lett 58:1902

    Article  ADS  Google Scholar 

  • Das Sarma S, Mason BA (1985) Screening of polar interaction in quasi-two-dimensional semiconductor microstructures. Phys Rev B 31:5536

    Article  ADS  Google Scholar 

  • Debernardi A (1998) Phonon linewidth in III-V semiconductors from density-functional perturbation theory. Phys Rev B 57:12847

    Article  ADS  Google Scholar 

  • Dyakonov MI (ed) (2008) Spin physics in semiconductors. Springer, Berlin/Heidelberg

    Google Scholar 

  • Dyakonov MI, Perel VI (1971) Spin orientation of electrons associated with the interband absorption of light in semiconductors. Sov Phys JETP 33:1053

    ADS  Google Scholar 

  • Dyakonov MI, Perel VI (1972) Spin relaxation of conduction electrons in noncentrosymmetric semiconductors. Sov Phys Solid State 13:3023

    Google Scholar 

  • Dyakonov MI, Perel VI (1984) Theory of optical spin orientation of electrons and nuclei in semiconductors. In: Meier F, Zakharchenya BP (eds) Optical orientation. North Holland, Amsterdam, pp 11–72

    Chapter  Google Scholar 

  • Dymnikov VD, Mirlin DN, Perel VI, Reshina II (1978) Linear polarization of hot photoluminescence of gallium arsenide crystals. Sov Phys Sol State 20:1250

    Google Scholar 

  • Dzhioev RI, Kavokin KV, Korenev VL, Lazarev MV, Meltser BY, Stepanova MN, Zakharchenya BP, Gammon D, Katzer DS (2002a) Low-temperature spin relaxation in n-type GaAs. Phys Rev B 66:245204

    Article  ADS  Google Scholar 

  • Dzhioev RI, Korenev VL, Merkulov IA, Zakharchenya BP, Gammon D, Efros AL, Katzer DS (2002b) Manipulation of the spin memory of electrons in n-GaAs. Phys Rev Lett 88:256801

    Article  ADS  Google Scholar 

  • Eastman LF (1982) Very high electron velocity in short gallium arsenide structures. In: Grosse P (ed) Festkörperprobleme, vol 22. Advances in solid state physics. Vieweg, Braunschweig, pp 173–187

    Google Scholar 

  • Elliot RJ (1954) Theory of the effect of spin-orbit coupling on magnetic resonance in some semiconductors. Phys Rev 96:266

    Article  ADS  Google Scholar 

  • Elsaesser T, Leitenstorfer A, Kuhn T, Rossi F (1996) Ultrafast dynamics of electronic excitations in semiconductors. Prog Crystal Growth Character Mater 33:41

    Article  Google Scholar 

  • Fasol G, Hughes HP (1986) Band-structure determination of GaAs from hot-electron luminescence. Phys Rev B 33:2953

    Article  ADS  Google Scholar 

  • Ferry DK (1978) Energy-gap narrowing and state filling in semiconductors under intense laser irradiation. Phys Rev B 18:7033

    Article  ADS  Google Scholar 

  • Ferry DK (1980) Modeling of carrier transport in the finite collision duration regime: effects in submicron semiconductor devices. In: Ferry DK, Barker JR, Jacoboni C (eds) Physics of nonlinear transport in semiconductors. Plenum Press, New York, pp 577–588

    Chapter  Google Scholar 

  • Ferry DK (1991) Semiconductors. Macmillian, New York

    Google Scholar 

  • Ferry DK, Barker JR (1981) Generalized diffusion, mobility, and the velocity autocorrelation function for high-field transport in semiconductors. J Appl Phys 52:818

    Article  ADS  Google Scholar 

  • Ferry DK, Grubin HL, Iafrate GJ (1984) Transient transport in semiconductors and submicron devices. In: Alfano RR (ed) Semiconductors probed by ultrafast laser spectroscopy, vol 1. Academic Press, New York, pp 413–447

    Chapter  Google Scholar 

  • Fouquet JE, Burnham RD (1986) Recombination dynamics in GaAs/Al x Ga1-x As quantum well structures. IEEE J Quantum Electron QE 22:1799

    Article  ADS  Google Scholar 

  • Fröhlich H (1937) Theory of electrical breakdown in ionic crystals. Proc R Soc Lond A 160:280

    Article  Google Scholar 

  • Gale GM, Laubereau A (1983) Direct measurement of picosecond and sub-picosecond phonon lifetimes in α-quartz. Opt Commun 44:273

    Article  ADS  Google Scholar 

  • Ganikhanov F, Vallée F (1997) Coherent TO phonon relaxation in GaAs and InP. Phys Rev B 55:15614

    Article  ADS  Google Scholar 

  • Garbuzov DZ, Ekimov AI, Safarov VI (1971) Measurement of the lifetime and of the spin-relaxation time of electrons in semiconductors by the optical-orientation method. Sov Phys JETP Lett 13:24

    ADS  Google Scholar 

  • Göbel EO, Kuhl J, Hoger R (1986) Short pulse physics of quantum well structures. J Lumin 30:541

    Article  Google Scholar 

  • Graudszus W, Göbel EO (1981) Picosecond luminescence studies of hot carrier relaxation in pure and highly doped GaAs. J Physique 42(Colloq C7):437

    Google Scholar 

  • Graudszus W, Göbel EO (1983) Free carrier screening of the Fröhlich interaction in GaAs. Physica B 117:555

    Article  Google Scholar 

  • Gurioli M, Borri P, Colocci M, Gulia M, Rossi F, Molinari E, Selbmann PE, Lugli P (1998) Exciton formation and relaxation in GaAs epilayers. Phys Rev B 58:13403

    Article  ADS  Google Scholar 

  • Hanamura E (1988) Rapid radiative decay and enhanced optical nonlinearity of excitons in a quantum well. Phys Rev B 38:1228

    Article  ADS  Google Scholar 

  • Hanle W (1924) Über magnetische Beeinflussung der Polarisation der Resonanzfluoreszenz. Z Physik 30:93. (On the magnetic influence of polarization of the resonance fluorescence, in German)

    Article  ADS  Google Scholar 

  • Harley RT (2008) Spin dynamics of free carriers in quantum wells. In: Dyakonov MI (ed) Spin physics in semiconductors. Springer, Berlin/Heidelberg, pp 29–54

    Chapter  Google Scholar 

  • Haug H, Schmitt-Rink S (1985) Basic mechanisms of the optical nonlinearities of semiconductors near the band edge. J Opt Soc Am B 2:1135

    Article  ADS  Google Scholar 

  • Haug H, Tran Thoai DB, Schmitt-Rink S, Bohnert K, Klingshirn C, Blattner G (1980) The electron-hole plasma in direct II-VI compounds, Proc 15th Int Conf Phys Semicond Kyoto. J Phys Soc Jpn Suppl A 49:503

    Google Scholar 

  • Haug H, Koch SW (1990) Quantum theory of optical and electronic properties of semiconductors. World Scientific, Singapore

    Book  MATH  Google Scholar 

  • Haynes JR, Shockley W (1951) The mobility and life of injected holes and electrons in germanium. Phys Rev 81:835

    Article  ADS  Google Scholar 

  • Hearn CJ (1980) Physics of nonlinear transport in solids. Plenum Press, New York

    Google Scholar 

  • Heiblum M, Nathan MI, Thomas DC, Knoedler CM (1985) Direct observation of ballistic transport in GaAs. Phys Rev Lett 55:2200

    Article  ADS  Google Scholar 

  • Henderson GN, Gaylord TK, Glytsis EN (1993) Diffraction of ballistic electrons by semiconductor gratings: rigorous analysis, approximate analyses, and device design. IEEE J Quantum Electron QE 29:121

    Article  ADS  Google Scholar 

  • Henry CH, Nassau K (1970) Lifetimes of bound excitons in CdS. Phys Rev B 1:1628

    Article  ADS  Google Scholar 

  • Hilton DJ, Tang CL (2002) Optical orientation and femtosecond relaxation of spin-polarized holes in GaAs. Phys Rev Lett 89:146601

    Article  ADS  Google Scholar 

  • Höpfel RA, Shah J, Gossard AC (1986) Nonequilibrium electron-hole plasma in GaAs quantum wells. Phys Rev Lett 56:765

    Article  ADS  Google Scholar 

  • Irmer G, Wenzel M, Monecke J (1996) The temperature dependence of the LO(Γ) and TO(Γ) phonons in GaAs and InP. Phys Stat Sol B 195:85

    Article  ADS  Google Scholar 

  • Johansen J, Julsgaard B, Stobbe S, Hvam JM, Lodahl P (2010) Probing long-lived dark excitons in self-assembled quantum dots. Phys Rev B 81:081304

    Article  ADS  Google Scholar 

  • Jonscher AK (1983) Dielectric relaxation in solids. Chelsea Dielectric Press, London

    Google Scholar 

  • Kaindl RA, Hägele D, Carnahan MA, Chemla DS (2009) Transient terahertz spectroscopy of excitons and unbound carriers in quasi-two-dimensional electron-hole gases. Phys Rev B 79:045320

    Article  ADS  Google Scholar 

  • Kalt H (1994) The electron-hole plasma and liquid in confined semiconductor systems. J Lumin 60:262

    Article  Google Scholar 

  • Kash JA (1989) Carrier-carrier scattering in GaAs: quantitative measurements from hot (e,A 0) luminescence. Phys Rev B 40:3455

    Article  ADS  Google Scholar 

  • Kash JA, Tsang JC, Hvam JM (1985) Subpicosecond time-resolved Raman spectroscopy of LO phonons in GaAs. Phys Rev Lett 54:2151

    Article  ADS  Google Scholar 

  • Keldysh LV (1986) The electron-hole liquid in semiconductors. Contemp Phys 27:395

    Article  ADS  Google Scholar 

  • Keldysh LV (1997) Excitons in semiconductor-dielectric nanostructures. Phys Stat Sol A 164:3

    Article  ADS  Google Scholar 

  • Kikkawa JM, Awschalom DD (1998) Resonant spin amplification in n-Type GaAs. Phys Rev Lett 80:4313

    Google Scholar 

  • Kim D-S, Yu PY (1990) Phonon temperature overshoot in GaAs excited by subpicosecond laser pulses. Phys Rev Lett 64:946

    Article  ADS  Google Scholar 

  • Kim D-S, Yu PY (1991) Hot-electron relaxations and hot phonons in GaAs studied by subpicosecond Raman scattering. Phys Rev B 43:4158

    Article  ADS  Google Scholar 

  • Kleinman DA, Miller RC (1981) Relaxation of optically pumped electron spins through a virtual photon: experimental evidence in heavily Zn-doped GaAs. Phys Rev Lett 46:68

    Article  ADS  Google Scholar 

  • Knox WH, Hirlimann C, Miller DAB, Shah J, Chemla DS, Shank CV (1986) Femtosecond excitation of nonthermal carrier populations in GaAs quantum wells. Phys Rev Lett 56:1191

    Article  ADS  Google Scholar 

  • Koudinov AV, Dzhioev RI, Korenev VL, Sapega VF, Kusrayev YG (2016) Optical spin orientation of minority holes in a modulation-doped GaAs/(Ga,al)as quantum well. Phys Rev B 93:165301

    Article  ADS  Google Scholar 

  • Kreuzer HJ (1981) Non-equilibrium thermodynamics and its statistical foundation. Claredon, Oxford

    Google Scholar 

  • Kuhl J, von der Linde D (1982) Picosecond phenomena vol III. Springer, Berlin

    Google Scholar 

  • Lampel G (1974) Optical pumping in semiconductors. In: Pilkuhn MH (ed) Proc 12th Int conf phys semicond. Teubner Verlag, Stuttgart, pp 743–750

    Google Scholar 

  • Laubereau A (1984) Semiconductors probed by ultrafast laser spectroscopy vol I. Academic Press, New York

    Google Scholar 

  • Laubereau A, Kaiser W (1974) Generation and applications of passively mode-locked picosecond light pulses. Optoelectronics 6:1

    Google Scholar 

  • Leheny RF, Shah J, Fork RL, Shank CV, Migus A (1979) Dynamics of hot carrier cooling in photo-excited GaAs. Sol State Commun 31:809

    Article  ADS  Google Scholar 

  • Leitenstorfer A, Lohner A, Elsaesser T, Haas S, Rossi F, Kuhn T, Klein W, Boehm G, Traenkle G, Weimann G (1994) Ultrafast coherent generation of hot electrons studied via band-to-acceptor luminescence in GaAs. Phys Rev Lett 73:1687

    Article  ADS  Google Scholar 

  • Leo K (1993) Quantum beats in quantum wells. In: Henneberger F, Schmitt-Rink S, Göbel EO (eds) Optics of semiconductor nanostructures. Akademie Verlag, Berlin, pp 127–148

    Google Scholar 

  • Levi AFJ, Hayes JR, Bhat R (1986) “ballistic” injection devices in semiconductors. Appl Phys Lett 48:1609

    Article  ADS  Google Scholar 

  • Lugli P, Bordone P, Reggiani L, Rieger M, Kocevar P, Goodnick SM (1989) Monte Carlo studies of nonequilibrium phonon effects in polar semiconductors and quantum wells. I. Laser photoexcitation. Phys Rev B 39:7852

    Article  ADS  Google Scholar 

  • Lugli P, Bordone P, Molinari E, Rücker H, de Paula AM, Maciel AC, Ryan JF, Shayegan M (1992) Interaction of electrons with interface phonons in GaAs/AlAs and GaAs/AlGaAs heterostructures. Semicond Sci Technol B 7:116

    Article  Google Scholar 

  • Luzzi R, Vasconcellos AR (1984) Relaxation processes in non-equilibrium semiconductor plasma. In: Alfano RR (ed) Semiconductors probed by ultrafast laser spectroscopy, vol 1. Academic Press, Orlando, pp 135–169

    Chapter  Google Scholar 

  • Lyon SA (1986) Spectroscopy of hot carriers in semiconductors. J Lumin 35:121

    Article  Google Scholar 

  • Mahr H, Hirsch MD (1975) An optical up-conversion light gate with picosecond resolution. Opt Commun 13:96

    Article  ADS  Google Scholar 

  • Maloney TJ, Frey J (1977) Transient and steady-state electron transport properties of GaAs and InP. J Appl Phys 48:781

    Article  ADS  Google Scholar 

  • Malvezzi AM (1987) Interaction of picosecond laser pulses with solid surfaces. Proc SPIE 793:49

    Article  ADS  Google Scholar 

  • Manenkov AA, Milyaev VA, Mikhailova GN, Sanina VA, Seferov AS (1976) High-frequency breakdown of excitons and kinetics of free carriers and excitons in germanium in the presence of electron-hole drops. Sov Phys JETP 43:359

    ADS  Google Scholar 

  • Marie X, Urbaszek B, Krebs O, Amand T (2008) Exciton-spin dynamics in semiconductor quantum dots. In: Dyakonov MI (ed) Spin physics in semiconductors. Springer, Berlin/Heidelberg, pp 91–113

    Chapter  Google Scholar 

  • Mirlin DN (1984) Optical alignment of electron momenta in GaAs-type semiconductors. In: Meier F, Zakharchenya BP (eds) Optical orientation. Elsevier Science, New York

    Google Scholar 

  • Nag BR (1975) Microwave magnetoconductivity of polar semiconductors. J Appl Phys 46:4819

    Article  ADS  Google Scholar 

  • Nag BR (1984) Relaxation of momentum and energy of carriers in semiconductors. In: Alfano RR (ed) Semiconductors probed by ultrafast laser spectroscopy vol 1. Academic Press, Orlando, pp 3–44

    Chapter  Google Scholar 

  • Orbach R (1967) Phonon breakdown. IEEE Trans Sonics Ultrasonics 14:140

    Article  Google Scholar 

  • Oudar JL, Hulin D, Migus A, Antonetti A, Alexandre F (1985) Subpicosecond spectral hole burning due to nonthermalized photoexcited carriers in GaAs. Phys Rev Lett 55:2074

    Article  ADS  Google Scholar 

  • Parsons RR (1969) Band-to-band optical pumping in solids and polarized photoluminescence. Phys Rev Lett 23:1152

    Article  ADS  Google Scholar 

  • Penzkofer A, Laubereau A, Kaiser W (1979) High intensity Raman interactions. Prog Quantum Electron 5:55

    Article  ADS  Google Scholar 

  • Pfister G (1976) Dispersive low-temperature transport in α-selenium. Phys Rev Lett 36:271

    Article  ADS  Google Scholar 

  • Pfister G, Scher H (1977) Time-dependent electrical transport in amorphous solids: As2Se3. Phys Rev B 15:2062

    Article  ADS  Google Scholar 

  • Pikus GE, Titkov AN (1984) Spin relaxation under optical orientation in semiconductors. In: Meier F, Zakharchenya BP (eds) Optical orientation. North Holland, Amsterdam, pp 73–132

    Chapter  Google Scholar 

  • Price PJ (1985) Hot phonon effects in heterolayers. Physica B & C 134:164

    Article  ADS  Google Scholar 

  • Quinn JJ (1962) Range of excited electrons in metals. Phys Rev 126:1453

    Article  ADS  MATH  Google Scholar 

  • Rappel WJ, Feiner LF, Schuurmans MFH (1988) Exciton-polariton picture of the free-exciton lifetime in GaAs. Phys Rev B 38:7874

    Article  ADS  Google Scholar 

  • Rice TM (1977) The electron-hole liquid in semiconductors: theoretical aspects. In: Ehrenreich H, Seitz F, Turnbull D (eds) Solid state physics, vol 32. Academic Press, New York, pp 1–86

    Google Scholar 

  • Roussignol P, Rolland P, Ferreira R, Delalande C, Bastard G, Vinattieri A, Martinez-Pastor J, Carraresi L, Colocci M, Palmier J, Etienne B (1992) Hole polarization and slow hole-spin relaxation in an n-doped quantum-well structure. Phys Rev B 46:7292

    Article  ADS  Google Scholar 

  • Ruch JG (1972) Electron dynamics in short channel field-effect transistors. IEEE Trans Electron Devices ED 19:652

    Article  ADS  Google Scholar 

  • Ruf T, Belitsky VI, Spitzer J, Sapega VF, Cardona M, Ploog K (1993) Disorder-induced Raman scattering of folded phonons in quantum wells and superlattices. Sol State Electron 37:609

    Article  ADS  Google Scholar 

  • Ryan JF, Tatham MC (1992) Time-resolved Raman measurements of electron-phonon interactions in quantum wells and superlattices. In: Shah J (ed) Hot carriers in semiconductor nanostructures. Academic Press, San Diego, pp 345–378

    Chapter  Google Scholar 

  • Saito H, Göbel EO (1985) Picosecond spectroscopy of highly excited CdS. Phys Rev B 31:2360

    Article  ADS  Google Scholar 

  • Scher H, Montroll EW (1975) Anomalous transit-time dispersion in amorphous solids. Phys Rev B 12:2455

    Article  ADS  Google Scholar 

  • Schultheis L, Kuhl J, Honold A, Tu CW (1986) Picosecond phase coherence and orientational relaxation of excitons in GaAs. Phys Rev Lett 57:1797

    Article  ADS  Google Scholar 

  • Segall B, Mahan GD (1968) Phonon-assisted recombination of free excitons in compound semiconductors. Phys Rev 171:935

    Article  ADS  Google Scholar 

  • Shah J (1978) Hot electrons and phonons under high intensity photoexcitation of semiconductors. Solid State Electron 21:43

    Article  ADS  Google Scholar 

  • Shah J (1986) Hot carriers in quasi-2-D polar semiconductors. IEEE J Quantum Electron QE 22:1728

    Article  ADS  Google Scholar 

  • Shah J (1999) Ultrafast spectroscopy of semiconductors and semiconductor nanostructures, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  • Shah J, Leheny RF (1984) Hot carriers in semiconductors probed by picosecond techniques. In: Alfano RR (ed) Semiconductors probed by ultrafast laser spectroscopy vol 1. Academic Press, Orlando, pp 45–75

    Chapter  Google Scholar 

  • Shah J, Pinczuk A, Gossard AC, Wiegmann W (1985) Energy-loss rates for hot electrons and holes in GaAs quantum wells. Phys Rev Lett 54:2045

    Article  ADS  Google Scholar 

  • Shah J, Deveaud B, Damen TC, Tsang WT, Gossard AC, Lugli P (1987) Determination of intervalley scattering rates in GaAs by subpicosecond luminescence spectroscopy. Phys Rev Lett 59:2222

    Article  ADS  Google Scholar 

  • Sham LJ (1993) Spin relaxation in semiconductor quantum wells. J Phys Condens Mater 5:A51

    Article  ADS  Google Scholar 

  • Shur MS, Eastman LF (1981) Near ballistic electron transport in GaAs devices at 77°K. Solid State Electron 24:11

    Article  ADS  Google Scholar 

  • Smith RA (1978) Semiconductors. Cambridge University Press, Cambridge, UK

    MATH  Google Scholar 

  • Snelling MJ, Flinn GP, Plaut AS, Harley RT, Tropper AC, Eccleston R, Phillips CC (1991) Phys Rev B 44:11345

    Article  ADS  Google Scholar 

  • Srivastava GP (1990) The physics of phonons. Hilger, Bristol

    Google Scholar 

  • Tanaka S, Kobayashi H, Saito H, Shionoya S (1980) Luminescence of high density electron-hole plasma in GaAs. J Phys Soc Jpn 49:1051

    Article  ADS  Google Scholar 

  • t’Hooft GW, van der Poel WAJA, Molenkamp LW, Foxon CT (1987) Giant oscillator strength of free excitons in GaAs. Phys Rev B 35:8281

    Article  ADS  Google Scholar 

  • t’Hooft GW, van der Poel WAJA, Molenkamp LW, Foxon CT (1988) True radiative lifetime of free excitons in GaAs. In: Del Sole R, D’Andrea A, Lapiccirella A (eds) Excitons in confined systems. Springer, Berlin, pp 59–62

    Google Scholar 

  • Tiedje T (1984) Information about band-tail states from time-of-flight experiments. In: Willardson RK, Beer AC, Pankove J (eds) Semiconductors and semimetals, vol 21C. Academic Press, New York, pp 207–238

    Google Scholar 

  • Titkov AN, Chaikina EI, Komova EM, Ermakova MG (1981) Low-temperature luminescence of degenerate p-type crystals of direct-gap semiconductors. Sov Phys Semicond 15:198

    Google Scholar 

  • Tsen KT (1993) Electron-optical phonon interactions in polar semiconductor quantum wells. Int J Mod Phys B 7:4165

    Article  ADS  Google Scholar 

  • Tsitsishvili E, Kalt H (2010) Exciton spin relaxation in strongly confining semiconductor quantum dots. Phys Rev B 82:195315

    Google Scholar 

  • Ulbrich RG (1978) Low density photoexcitation phenomena in semiconductors: aspects of theory and experiment. Sol State Electron 21:51

    Article  ADS  Google Scholar 

  • Ulbrich RG, Kash JA, Tsang JC (1989) Hot-electron recombination at neutral acceptors in GaAs: a cw probe of femtosecond intervalley scattering. Phys Rev Lett 62:949

    Article  ADS  Google Scholar 

  • Ulbricht R, Hendry E, Shan J, Heinz TF, Bonn M (2017) Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy. Rev Mod Phys 83:543

    Article  ADS  Google Scholar 

  • Valdmanis JA, Fork RL, Gordon JP (1985) Generation of optical pulses as short as 27 femtoseconds directly from a laser balancing self-phase modulation, group-velocity dispersion, saturable absorption, and saturable gain. Opt Lett 10:131

    Article  ADS  Google Scholar 

  • Vashishta P, Kalia RK (1982) Universal behavior of exchange-correlation energy in electron-hole liquid. Phys Rev B 25:6492

    Article  ADS  Google Scholar 

  • Viña L (1999) Spin relaxation in low-dimensional systems. J Phys Condens Matter 11:5929

    Article  ADS  Google Scholar 

  • Viña L, Damen TC, Cunningham JE, Shah J, Sham LJ (1992) Spin relaxation dynamics in GaAs quantum wells: free carriers and excitons. Superlatt Microstruct 12:379

    Article  ADS  Google Scholar 

  • von der Linde D (1979) Picosecond spectroscopy: methods and applications. In: Treusch J (ed) Festkörperprobleme, vol 19. Advances in solid state physics. Vieweg, Braunschweig, pp 387–402

    Google Scholar 

  • von der Linde D, Kuhl J, Klingenberg H (1980) Raman scattering from nonequilibrium LO phonons with picosecond resolution. Phys Rev Lett 44:1505

    Article  ADS  Google Scholar 

  • Wei H, Guo G-C, He L (2014) Slow exciton spin relaxation in single self-assembled In1-x Ga x As/GaAs quantum dots. Phys Rev B 89:245305

    Article  ADS  Google Scholar 

  • Wiley JD (1975) Mobility of holes in III-V compounds. In: Willardson RK, Beer AC (eds) Semiconductors and semimetals, vol 10. Academic Press, New York, pp 91–174

    Google Scholar 

  • Worlock JM, Damen TC, Shaklee KL, Gordon JP (1974) Determination of the optical properties and absolute concentrations of electron-hole drops in germanium. Phys Rev Lett 33:771

    Article  ADS  Google Scholar 

  • Yafet Y (1963) g factors and spin-lattice relaxation of conduction electrons. In: Seitz F, Turnbull D (eds) Solid state physics, vol 14. Academic Press, New York, pp 1–98

    Google Scholar 

  • Yamamoto Y, Tassone F, Cao H (2000) Semiconductor cavity quantum electrodynamics. Springer, Berlin/New York

    Google Scholar 

  • Yoffa EJ (1981) Screening of hot-carrier relaxation in highly photoexcited semiconductors. Phys Rev B 23:1909

    Article  ADS  Google Scholar 

  • Yoshida H, Saito H, Shionoya S (1981) Luminescence and inter-valence band hole relaxation in high density electron-hole plasma in CdSe and CdS. J Phys Soc Jpn 50:881

    Article  ADS  Google Scholar 

  • Zheludev NI, Brummell MA, Harley RT, Malinowski A, Popov SV, Ashenford DE, Lunn B (1994) Giant specular inverse faraday effect in Cd0.6Mn0.4Te. Sol State Commun 89:823

    Article  ADS  Google Scholar 

  • Zimmermann J, Lugli P, Ferry DK (1981) Non-equilibrium hot carrier diffusion phenomena in semiconductors I, a theoretical non-Markovian approach. J Physique 42(Colloq C7):95

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Udo W. Pohl .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Böer, K.W., Pohl, U.W. (2017). Dynamic Processes. In: Semiconductor Physics. Springer, Cham. https://doi.org/10.1007/978-3-319-06540-3_32-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06540-3_32-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06540-3

  • Online ISBN: 978-3-319-06540-3

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Dynamic Processes
    Published:
    12 July 2022

    DOI: https://doi.org/10.1007/978-3-319-06540-3_32-3

  2. Dynamic Processes
    Published:
    29 March 2020

    DOI: https://doi.org/10.1007/978-3-319-06540-3_32-2

  3. Original

    Dynamic Processes
    Published:
    31 August 2017

    DOI: https://doi.org/10.1007/978-3-319-06540-3_32-1