Advertisement

Dynamic Processes

  • Karl W. Böer
  • Udo W. PohlEmail author
Living reference work entry

Later version available View entry history

  • 184 Downloads

Abstract

When an external parameter such as an electric field or an optical generation rate is changed as a function of time, carriers in the semiconductor respond on this disturbance by a redistribution controlled by relaxation times. Relaxation proceeds by elastic or inelastic scattering with carriers, phonons, defects, or spin momenta, and respective time constants range from femtoseconds to years.

Relaxation of injected carriers is given by the carrier lifetime and related to their diffusion or drift length. Nonthermal excess energy of hot carriers is transferred to the lattice mostly by optical phonons. At high carrier density also plasmons, and at high carrier-generation rates and low lattice temperature, condensation into electron-hole droplets with evaporation into excitons are involved. Optical phonons, excited by fast carriers or by an IR light pulse, relax their momenta by elastic scattering with phonons in the same branch, or by a decay into acoustical phonons.

Relaxation of excitons created by nonresonant optical excitation proceeds by inelastic scattering, eventually yielding radiative recombination for momenta near the zone center. The rise time in the luminescence after pulse excitation is controlled by the balance to uncorrelated electron-hole pairs. Resonantly excited excitons show a fast rise in the coherent regime and an exponential decay with an observed time constant depending on excitation density.

Carrier spin and orbital momenta are coherently aligned by excitation with polarized light. The subsequent relaxation can be detected by the degree of polarization of the radiative recombination. Holes in semiconductors with degenerate valence bands at the zone center have short spin-relaxation times in the sub-ps range; lifting this degeneracy slows relaxation down. Electrons have usually longer spin-relaxation times, limited by various mechanisms. In an exciton with weak electron-hole interaction the spin-relaxation time of the sequential spin flip of electron and hole is given by the slower particle, while at stronger interaction the faster simultaneous spin flip occurs.

Keywords

Carrier cooling Carrier heating Dephasing Dispersive transport Electron-hole plasma Energy relaxation Exciton relaxation Hot carriers Lattice temperature Lifetime Momentum relaxation Phonon relaxation Polarization Recombination Relaxation time Scattering processes Spin relaxation Trapping 

References

  1. Amand T, Marie X (2008) Exciton spin dynamics in semiconductor quantum wells. In: Dyakonov MI (ed) Spin physics in semiconductors. Springer, Berlin/Heidelberg, pp 55–89CrossRefGoogle Scholar
  2. Amo A, Martín MD, Viña L, Toropov AI, Zhuravlev KS (2006) Interplay of exciton and electron-hole plasma recombination on the photoluminescence dynamics in bulk GaAs. Phys Rev B 73:035205ADSCrossRefGoogle Scholar
  3. Andreani CL, Pasquarello A (1990) Accurate theory of excitons in GaAs-Ga1-xAlx quantum wells. Phys Rev B 42:8928ADSCrossRefGoogle Scholar
  4. Arya K, Hanke W (1981) Many-body coulomb effects on the gain and absorption line shapes of the electron-hole plasma in GaAs. Phys Rev B 23:2988ADSCrossRefGoogle Scholar
  5. Awschalom DD, Samarth N (2002) Optical manipulation, transport, and storage of spin coherence in semiconductors. In: Awschalom DD, Loss D, Samarth N (eds) Semiconductor spintronics and quantum computation. Springer, Berlin, pp 147–193CrossRefGoogle Scholar
  6. Bar-Ad S, Bar-Joseph I (1992) Exciton spin dynamics in GaAs heterostructures. Phys Rev Lett 68:349ADSCrossRefGoogle Scholar
  7. Barker JR (1980) Quantum transport theory. In: Ferry DK, Barker JR, Jacoboni C (eds) Physics of nonlinear transport in semiconductors. Plenum Press, New York, pp 126–152Google Scholar
  8. Barker JR, Ferry DK (1980) On the physics and modeling of small semiconductor devices I. Solid State Electron Dev 23:519ADSCrossRefGoogle Scholar
  9. Barman S, Srivastava GP (2004) Long-wavelength nonequilibrium optical phonon dynamics in cubic and hexagonal semiconductors. Phys Rev B 69:235208ADSCrossRefGoogle Scholar
  10. Bauer G (1978) Experimental aspects of hot electron distribution functions. Solid State Electron 21:17ADSCrossRefGoogle Scholar
  11. Baumberg JJ, Awschalom DD, Samarth N, Luo H, Furdyna JK (1994) Spin beats and dynamical magnetization in quantum structures. Phys Rev Lett 72:717ADSCrossRefGoogle Scholar
  12. Beck M, Hübner J, Oestreich M, Bieker S, Henn T, Kiessling T, Ossau W, Molenkamp LW (2016) Thermodynamic origin of the slow free exciton photoluminescence rise in GaAs. Phys Rev B 93:081204ADSCrossRefGoogle Scholar
  13. Bir GL, Aronov AG, Pikus GE (1976) Spin relaxation of electrons due to scattering by holes. Sov Phys JETP 42:705ADSGoogle Scholar
  14. Brooks H (1955) Theory of the electrical properties of germanium and silicon. Adv Electr Electron Phys 7:85CrossRefGoogle Scholar
  15. Citrin DS (1993) Radiative lifetimes of excitons in quantum wells: localization and phase-coherence effects. Phys Rev B 47:3832ADSCrossRefGoogle Scholar
  16. Collins CL, Yu PY (1984) Generation of nonequilibrium optical phonons in GaAs and their application in studying intervalley electron-phonon scattering. Phys Rev B 30:4501ADSCrossRefGoogle Scholar
  17. Conwell EM (1982) Transport: the Boltzmann equation. In: Moss TS, Paul W (eds) Handbook of semiconductors, vol 1. Band theory and transport properties. North Holland Publ, Amsterdam, pp 513–561Google Scholar
  18. Damen TC, Viña L, Cunningham JE, Shah J, Sham LJ (1991a) Subpicosecond spin relaxation dynamics of excitons and free carriers in GaAs quantum wells. Phys Rev Lett 67:3432ADSCrossRefGoogle Scholar
  19. Damen TC, Leo K, Shah J, Cunningham JE (1991b) Spin relaxation and thermalization of excitons in GaAs quantum wells. Appl Phys Lett 58:1902ADSCrossRefGoogle Scholar
  20. Das Sarma S, Mason BA (1985) Screening of polar interaction in quasi-two-dimensional semiconductor microstructures. Phys Rev B 31:5536ADSCrossRefGoogle Scholar
  21. Debernardi A (1998) Phonon linewidth in III-V semiconductors from density-functional perturbation theory. Phys Rev B 57:12847ADSCrossRefGoogle Scholar
  22. Dyakonov MI (ed) (2008) Spin physics in semiconductors. Springer, Berlin/HeidelbergGoogle Scholar
  23. Dyakonov MI, Perel VI (1971) Spin orientation of electrons associated with the interband absorption of light in semiconductors. Sov Phys JETP 33:1053ADSGoogle Scholar
  24. Dyakonov MI, Perel VI (1972) Spin relaxation of conduction electrons in noncentrosymmetric semiconductors. Sov Phys Solid State 13:3023Google Scholar
  25. Dyakonov MI, Perel VI (1984) Theory of optical spin orientation of electrons and nuclei in semiconductors. In: Meier F, Zakharchenya BP (eds) Optical orientation. North Holland, Amsterdam, pp 11–72CrossRefGoogle Scholar
  26. Dymnikov VD, Mirlin DN, Perel VI, Reshina II (1978) Linear polarization of hot photoluminescence of gallium arsenide crystals. Sov Phys Sol State 20:1250Google Scholar
  27. Dzhioev RI, Kavokin KV, Korenev VL, Lazarev MV, Meltser BY, Stepanova MN, Zakharchenya BP, Gammon D, Katzer DS (2002a) Low-temperature spin relaxation in n-type GaAs. Phys Rev B 66:245204ADSCrossRefGoogle Scholar
  28. Dzhioev RI, Korenev VL, Merkulov IA, Zakharchenya BP, Gammon D, Efros AL, Katzer DS (2002b) Manipulation of the spin memory of electrons in n-GaAs. Phys Rev Lett 88:256801ADSCrossRefGoogle Scholar
  29. Eastman LF (1982) Very high electron velocity in short gallium arsenide structures. In: Grosse P (ed) Festkörperprobleme, vol 22. Advances in solid state physics. Vieweg, Braunschweig, pp 173–187Google Scholar
  30. Elliot RJ (1954) Theory of the effect of spin-orbit coupling on magnetic resonance in some semiconductors. Phys Rev 96:266ADSCrossRefGoogle Scholar
  31. Elsaesser T, Leitenstorfer A, Kuhn T, Rossi F (1996) Ultrafast dynamics of electronic excitations in semiconductors. Prog Crystal Growth Character Mater 33:41CrossRefGoogle Scholar
  32. Fasol G, Hughes HP (1986) Band-structure determination of GaAs from hot-electron luminescence. Phys Rev B 33:2953ADSCrossRefGoogle Scholar
  33. Ferry DK (1978) Energy-gap narrowing and state filling in semiconductors under intense laser irradiation. Phys Rev B 18:7033ADSCrossRefGoogle Scholar
  34. Ferry DK (1980) Modeling of carrier transport in the finite collision duration regime: effects in submicron semiconductor devices. In: Ferry DK, Barker JR, Jacoboni C (eds) Physics of nonlinear transport in semiconductors. Plenum Press, New York, pp 577–588CrossRefGoogle Scholar
  35. Ferry DK (1991) Semiconductors. Macmillian, New YorkGoogle Scholar
  36. Ferry DK, Barker JR (1981) Generalized diffusion, mobility, and the velocity autocorrelation function for high-field transport in semiconductors. J Appl Phys 52:818ADSCrossRefGoogle Scholar
  37. Ferry DK, Grubin HL, Iafrate GJ (1984) Transient transport in semiconductors and submicron devices. In: Alfano RR (ed) Semiconductors probed by ultrafast laser spectroscopy, vol 1. Academic Press, New York, pp 413–447CrossRefGoogle Scholar
  38. Fouquet JE, Burnham RD (1986) Recombination dynamics in GaAs/AlxGa1-xAs quantum well structures. IEEE J Quantum Electron QE 22:1799ADSCrossRefGoogle Scholar
  39. Fröhlich H (1937) Theory of electrical breakdown in ionic crystals. Proc R Soc Lond A 160:280CrossRefGoogle Scholar
  40. Gale GM, Laubereau A (1983) Direct measurement of picosecond and sub-picosecond phonon lifetimes in α-quartz. Opt Commun 44:273ADSCrossRefGoogle Scholar
  41. Ganikhanov F, Vallée F (1997) Coherent TO phonon relaxation in GaAs and InP. Phys Rev B 55:15614ADSCrossRefGoogle Scholar
  42. Garbuzov DZ, Ekimov AI, Safarov VI (1971) Measurement of the lifetime and of the spin-relaxation time of electrons in semiconductors by the optical-orientation method. Sov Phys JETP Lett 13:24ADSGoogle Scholar
  43. Göbel EO, Kuhl J, Hoger R (1986) Short pulse physics of quantum well structures. J Lumin 30:541CrossRefGoogle Scholar
  44. Graudszus W, Göbel EO (1981) Picosecond luminescence studies of hot carrier relaxation in pure and highly doped GaAs. J Physique 42(Colloq C7):437Google Scholar
  45. Graudszus W, Göbel EO (1983) Free carrier screening of the Fröhlich interaction in GaAs. Physica B 117:555CrossRefGoogle Scholar
  46. Gurioli M, Borri P, Colocci M, Gulia M, Rossi F, Molinari E, Selbmann PE, Lugli P (1998) Exciton formation and relaxation in GaAs epilayers. Phys Rev B 58:13403ADSCrossRefGoogle Scholar
  47. Hanamura E (1988) Rapid radiative decay and enhanced optical nonlinearity of excitons in a quantum well. Phys Rev B 38:1228ADSCrossRefGoogle Scholar
  48. Hanle W (1924) Über magnetische Beeinflussung der Polarisation der Resonanzfluoreszenz. Z Physik 30:93. (On the magnetic influence of polarization of the resonance fluorescence, in German)ADSCrossRefGoogle Scholar
  49. Harley RT (2008) Spin dynamics of free carriers in quantum wells. In: Dyakonov MI (ed) Spin physics in semiconductors. Springer, Berlin/Heidelberg, pp 29–54CrossRefGoogle Scholar
  50. Haug H, Schmitt-Rink S (1985) Basic mechanisms of the optical nonlinearities of semiconductors near the band edge. J Opt Soc Am B 2:1135ADSCrossRefGoogle Scholar
  51. Haug H, Tran Thoai DB, Schmitt-Rink S, Bohnert K, Klingshirn C, Blattner G (1980) The electron-hole plasma in direct II-VI compounds, Proc 15th Int Conf Phys Semicond Kyoto. J Phys Soc Jpn Suppl A 49:503Google Scholar
  52. Haug H, Koch SW (1990) Quantum theory of optical and electronic properties of semiconductors. World Scientific, SingaporezbMATHCrossRefGoogle Scholar
  53. Haynes JR, Shockley W (1951) The mobility and life of injected holes and electrons in germanium. Phys Rev 81:835ADSCrossRefGoogle Scholar
  54. Hearn CJ (1980) Physics of nonlinear transport in solids. Plenum Press, New YorkGoogle Scholar
  55. Heiblum M, Nathan MI, Thomas DC, Knoedler CM (1985) Direct observation of ballistic transport in GaAs. Phys Rev Lett 55:2200ADSCrossRefGoogle Scholar
  56. Henderson GN, Gaylord TK, Glytsis EN (1993) Diffraction of ballistic electrons by semiconductor gratings: rigorous analysis, approximate analyses, and device design. IEEE J Quantum Electron QE 29:121ADSCrossRefGoogle Scholar
  57. Henry CH, Nassau K (1970) Lifetimes of bound excitons in CdS. Phys Rev B 1:1628ADSCrossRefGoogle Scholar
  58. Hilton DJ, Tang CL (2002) Optical orientation and femtosecond relaxation of spin-polarized holes in GaAs. Phys Rev Lett 89:146601ADSCrossRefGoogle Scholar
  59. Höpfel RA, Shah J, Gossard AC (1986) Nonequilibrium electron-hole plasma in GaAs quantum wells. Phys Rev Lett 56:765ADSCrossRefGoogle Scholar
  60. Irmer G, Wenzel M, Monecke J (1996) The temperature dependence of the LO(Γ) and TO(Γ) phonons in GaAs and InP. Phys Stat Sol B 195:85ADSCrossRefGoogle Scholar
  61. Johansen J, Julsgaard B, Stobbe S, Hvam JM, Lodahl P (2010) Probing long-lived dark excitons in self-assembled quantum dots. Phys Rev B 81:081304ADSCrossRefGoogle Scholar
  62. Jonscher AK (1983) Dielectric relaxation in solids. Chelsea Dielectric Press, LondonGoogle Scholar
  63. Kaindl RA, Hägele D, Carnahan MA, Chemla DS (2009) Transient terahertz spectroscopy of excitons and unbound carriers in quasi-two-dimensional electron-hole gases. Phys Rev B 79:045320ADSCrossRefGoogle Scholar
  64. Kalt H (1994) The electron-hole plasma and liquid in confined semiconductor systems. J Lumin 60:262CrossRefGoogle Scholar
  65. Kash JA (1989) Carrier-carrier scattering in GaAs: quantitative measurements from hot (e,A 0) luminescence. Phys Rev B 40:3455ADSCrossRefGoogle Scholar
  66. Kash JA, Tsang JC, Hvam JM (1985) Subpicosecond time-resolved Raman spectroscopy of LO phonons in GaAs. Phys Rev Lett 54:2151ADSCrossRefGoogle Scholar
  67. Keldysh LV (1986) The electron-hole liquid in semiconductors. Contemp Phys 27:395ADSCrossRefGoogle Scholar
  68. Keldysh LV (1997) Excitons in semiconductor-dielectric nanostructures. Phys Stat Sol A 164:3ADSCrossRefGoogle Scholar
  69. Kikkawa JM, Awschalom DD (1998) Resonant spin amplification in n-Type GaAs. Phys Rev Lett 80:4313Google Scholar
  70. Kim D-S, Yu PY (1990) Phonon temperature overshoot in GaAs excited by subpicosecond laser pulses. Phys Rev Lett 64:946ADSCrossRefGoogle Scholar
  71. Kim D-S, Yu PY (1991) Hot-electron relaxations and hot phonons in GaAs studied by subpicosecond Raman scattering. Phys Rev B 43:4158ADSCrossRefGoogle Scholar
  72. Kleinman DA, Miller RC (1981) Relaxation of optically pumped electron spins through a virtual photon: experimental evidence in heavily Zn-doped GaAs. Phys Rev Lett 46:68ADSCrossRefGoogle Scholar
  73. Knox WH, Hirlimann C, Miller DAB, Shah J, Chemla DS, Shank CV (1986) Femtosecond excitation of nonthermal carrier populations in GaAs quantum wells. Phys Rev Lett 56:1191ADSCrossRefGoogle Scholar
  74. Koudinov AV, Dzhioev RI, Korenev VL, Sapega VF, Kusrayev YG (2016) Optical spin orientation of minority holes in a modulation-doped GaAs/(Ga,al)as quantum well. Phys Rev B 93:165301ADSCrossRefGoogle Scholar
  75. Kreuzer HJ (1981) Non-equilibrium thermodynamics and its statistical foundation. Claredon, OxfordGoogle Scholar
  76. Kuhl J, von der Linde D (1982) Picosecond phenomena vol III. Springer, BerlinGoogle Scholar
  77. Lampel G (1974) Optical pumping in semiconductors. In: Pilkuhn MH (ed) Proc 12th Int conf phys semicond. Teubner Verlag, Stuttgart, pp 743–750Google Scholar
  78. Laubereau A (1984) Semiconductors probed by ultrafast laser spectroscopy vol I. Academic Press, New YorkGoogle Scholar
  79. Laubereau A, Kaiser W (1974) Generation and applications of passively mode-locked picosecond light pulses. Optoelectronics 6:1Google Scholar
  80. Leheny RF, Shah J, Fork RL, Shank CV, Migus A (1979) Dynamics of hot carrier cooling in photo-excited GaAs. Sol State Commun 31:809ADSCrossRefGoogle Scholar
  81. Leitenstorfer A, Lohner A, Elsaesser T, Haas S, Rossi F, Kuhn T, Klein W, Boehm G, Traenkle G, Weimann G (1994) Ultrafast coherent generation of hot electrons studied via band-to-acceptor luminescence in GaAs. Phys Rev Lett 73:1687ADSCrossRefGoogle Scholar
  82. Leo K (1993) Quantum beats in quantum wells. In: Henneberger F, Schmitt-Rink S, Göbel EO (eds) Optics of semiconductor nanostructures. Akademie Verlag, Berlin, pp 127–148Google Scholar
  83. Levi AFJ, Hayes JR, Bhat R (1986) “ballistic” injection devices in semiconductors. Appl Phys Lett 48:1609ADSCrossRefGoogle Scholar
  84. Lugli P, Bordone P, Reggiani L, Rieger M, Kocevar P, Goodnick SM (1989) Monte Carlo studies of nonequilibrium phonon effects in polar semiconductors and quantum wells. I. Laser photoexcitation. Phys Rev B 39:7852ADSCrossRefGoogle Scholar
  85. Lugli P, Bordone P, Molinari E, Rücker H, de Paula AM, Maciel AC, Ryan JF, Shayegan M (1992) Interaction of electrons with interface phonons in GaAs/AlAs and GaAs/AlGaAs heterostructures. Semicond Sci Technol B 7:116CrossRefGoogle Scholar
  86. Luzzi R, Vasconcellos AR (1984) Relaxation processes in non-equilibrium semiconductor plasma. In: Alfano RR (ed) Semiconductors probed by ultrafast laser spectroscopy, vol 1. Academic Press, Orlando, pp 135–169CrossRefGoogle Scholar
  87. Lyon SA (1986) Spectroscopy of hot carriers in semiconductors. J Lumin 35:121CrossRefGoogle Scholar
  88. Mahr H, Hirsch MD (1975) An optical up-conversion light gate with picosecond resolution. Opt Commun 13:96ADSCrossRefGoogle Scholar
  89. Maloney TJ, Frey J (1977) Transient and steady-state electron transport properties of GaAs and InP. J Appl Phys 48:781ADSCrossRefGoogle Scholar
  90. Malvezzi AM (1987) Interaction of picosecond laser pulses with solid surfaces. Proc SPIE 793:49ADSCrossRefGoogle Scholar
  91. Manenkov AA, Milyaev VA, Mikhailova GN, Sanina VA, Seferov AS (1976) High-frequency breakdown of excitons and kinetics of free carriers and excitons in germanium in the presence of electron-hole drops. Sov Phys JETP 43:359ADSGoogle Scholar
  92. Marie X, Urbaszek B, Krebs O, Amand T (2008) Exciton-spin dynamics in semiconductor quantum dots. In: Dyakonov MI (ed) Spin physics in semiconductors. Springer, Berlin/Heidelberg, pp 91–113CrossRefGoogle Scholar
  93. Mirlin DN (1984) Optical alignment of electron momenta in GaAs-type semiconductors. In: Meier F, Zakharchenya BP (eds) Optical orientation. Elsevier Science, New YorkGoogle Scholar
  94. Nag BR (1975) Microwave magnetoconductivity of polar semiconductors. J Appl Phys 46:4819ADSCrossRefGoogle Scholar
  95. Nag BR (1984) Relaxation of momentum and energy of carriers in semiconductors. In: Alfano RR (ed) Semiconductors probed by ultrafast laser spectroscopy vol 1. Academic Press, Orlando, pp 3–44CrossRefGoogle Scholar
  96. Orbach R (1967) Phonon breakdown. IEEE Trans Sonics Ultrasonics 14:140CrossRefGoogle Scholar
  97. Oudar JL, Hulin D, Migus A, Antonetti A, Alexandre F (1985) Subpicosecond spectral hole burning due to nonthermalized photoexcited carriers in GaAs. Phys Rev Lett 55:2074ADSCrossRefGoogle Scholar
  98. Parsons RR (1969) Band-to-band optical pumping in solids and polarized photoluminescence. Phys Rev Lett 23:1152ADSCrossRefGoogle Scholar
  99. Penzkofer A, Laubereau A, Kaiser W (1979) High intensity Raman interactions. Prog Quantum Electron 5:55ADSCrossRefGoogle Scholar
  100. Pfister G (1976) Dispersive low-temperature transport in α-selenium. Phys Rev Lett 36:271ADSCrossRefGoogle Scholar
  101. Pfister G, Scher H (1977) Time-dependent electrical transport in amorphous solids: As2Se3. Phys Rev B 15:2062ADSCrossRefGoogle Scholar
  102. Pikus GE, Titkov AN (1984) Spin relaxation under optical orientation in semiconductors. In: Meier F, Zakharchenya BP (eds) Optical orientation. North Holland, Amsterdam, pp 73–132CrossRefGoogle Scholar
  103. Price PJ (1985) Hot phonon effects in heterolayers. Physica B & C 134:164ADSCrossRefGoogle Scholar
  104. Quinn JJ (1962) Range of excited electrons in metals. Phys Rev 126:1453ADSzbMATHCrossRefGoogle Scholar
  105. Rappel WJ, Feiner LF, Schuurmans MFH (1988) Exciton-polariton picture of the free-exciton lifetime in GaAs. Phys Rev B 38:7874ADSCrossRefGoogle Scholar
  106. Rice TM (1977) The electron-hole liquid in semiconductors: theoretical aspects. In: Ehrenreich H, Seitz F, Turnbull D (eds) Solid state physics, vol 32. Academic Press, New York, pp 1–86Google Scholar
  107. Roussignol P, Rolland P, Ferreira R, Delalande C, Bastard G, Vinattieri A, Martinez-Pastor J, Carraresi L, Colocci M, Palmier J, Etienne B (1992) Hole polarization and slow hole-spin relaxation in an n-doped quantum-well structure. Phys Rev B 46:7292ADSCrossRefGoogle Scholar
  108. Ruch JG (1972) Electron dynamics in short channel field-effect transistors. IEEE Trans Electron Devices ED 19:652ADSCrossRefGoogle Scholar
  109. Ruf T, Belitsky VI, Spitzer J, Sapega VF, Cardona M, Ploog K (1993) Disorder-induced Raman scattering of folded phonons in quantum wells and superlattices. Sol State Electron 37:609ADSCrossRefGoogle Scholar
  110. Ryan JF, Tatham MC (1992) Time-resolved Raman measurements of electron-phonon interactions in quantum wells and superlattices. In: Shah J (ed) Hot carriers in semiconductor nanostructures. Academic Press, San Diego, pp 345–378CrossRefGoogle Scholar
  111. Saito H, Göbel EO (1985) Picosecond spectroscopy of highly excited CdS. Phys Rev B 31:2360ADSCrossRefGoogle Scholar
  112. Scher H, Montroll EW (1975) Anomalous transit-time dispersion in amorphous solids. Phys Rev B 12:2455ADSCrossRefGoogle Scholar
  113. Schultheis L, Kuhl J, Honold A, Tu CW (1986) Picosecond phase coherence and orientational relaxation of excitons in GaAs. Phys Rev Lett 57:1797ADSCrossRefGoogle Scholar
  114. Segall B, Mahan GD (1968) Phonon-assisted recombination of free excitons in compound semiconductors. Phys Rev 171:935ADSCrossRefGoogle Scholar
  115. Shah J (1978) Hot electrons and phonons under high intensity photoexcitation of semiconductors. Solid State Electron 21:43ADSCrossRefGoogle Scholar
  116. Shah J (1986) Hot carriers in quasi-2-D polar semiconductors. IEEE J Quantum Electron QE 22:1728ADSCrossRefGoogle Scholar
  117. Shah J (1999) Ultrafast spectroscopy of semiconductors and semiconductor nanostructures, 2nd edn. Springer, BerlinCrossRefGoogle Scholar
  118. Shah J, Leheny RF (1984) Hot carriers in semiconductors probed by picosecond techniques. In: Alfano RR (ed) Semiconductors probed by ultrafast laser spectroscopy vol 1. Academic Press, Orlando, pp 45–75CrossRefGoogle Scholar
  119. Shah J, Pinczuk A, Gossard AC, Wiegmann W (1985) Energy-loss rates for hot electrons and holes in GaAs quantum wells. Phys Rev Lett 54:2045ADSCrossRefGoogle Scholar
  120. Shah J, Deveaud B, Damen TC, Tsang WT, Gossard AC, Lugli P (1987) Determination of intervalley scattering rates in GaAs by subpicosecond luminescence spectroscopy. Phys Rev Lett 59:2222ADSCrossRefGoogle Scholar
  121. Sham LJ (1993) Spin relaxation in semiconductor quantum wells. J Phys Condens Mater 5:A51ADSCrossRefGoogle Scholar
  122. Shur MS, Eastman LF (1981) Near ballistic electron transport in GaAs devices at 77°K. Solid State Electron 24:11ADSCrossRefGoogle Scholar
  123. Smith RA (1978) Semiconductors. Cambridge University Press, Cambridge, UKzbMATHGoogle Scholar
  124. Snelling MJ, Flinn GP, Plaut AS, Harley RT, Tropper AC, Eccleston R, Phillips CC (1991) Phys Rev B 44:11345ADSCrossRefGoogle Scholar
  125. Srivastava GP (1990) The physics of phonons. Hilger, BristolGoogle Scholar
  126. Tanaka S, Kobayashi H, Saito H, Shionoya S (1980) Luminescence of high density electron-hole plasma in GaAs. J Phys Soc Jpn 49:1051ADSCrossRefGoogle Scholar
  127. t’Hooft GW, van der Poel WAJA, Molenkamp LW, Foxon CT (1987) Giant oscillator strength of free excitons in GaAs. Phys Rev B 35:8281ADSCrossRefGoogle Scholar
  128. t’Hooft GW, van der Poel WAJA, Molenkamp LW, Foxon CT (1988) True radiative lifetime of free excitons in GaAs. In: Del Sole R, D’Andrea A, Lapiccirella A (eds) Excitons in confined systems. Springer, Berlin, pp 59–62Google Scholar
  129. Tiedje T (1984) Information about band-tail states from time-of-flight experiments. In: Willardson RK, Beer AC, Pankove J (eds) Semiconductors and semimetals, vol 21C. Academic Press, New York, pp 207–238Google Scholar
  130. Titkov AN, Chaikina EI, Komova EM, Ermakova MG (1981) Low-temperature luminescence of degenerate p-type crystals of direct-gap semiconductors. Sov Phys Semicond 15:198Google Scholar
  131. Tsen KT (1993) Electron-optical phonon interactions in polar semiconductor quantum wells. Int J Mod Phys B 7:4165ADSCrossRefGoogle Scholar
  132. Tsitsishvili E, Kalt H (2010) Exciton spin relaxation in strongly confining semiconductor quantum dots. Phys Rev B 82:195315Google Scholar
  133. Ulbrich RG (1978) Low density photoexcitation phenomena in semiconductors: aspects of theory and experiment. Sol State Electron 21:51ADSCrossRefGoogle Scholar
  134. Ulbrich RG, Kash JA, Tsang JC (1989) Hot-electron recombination at neutral acceptors in GaAs: a cw probe of femtosecond intervalley scattering. Phys Rev Lett 62:949ADSCrossRefGoogle Scholar
  135. Ulbricht R, Hendry E, Shan J, Heinz TF, Bonn M (2017) Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy. Rev Mod Phys 83:543ADSCrossRefGoogle Scholar
  136. Valdmanis JA, Fork RL, Gordon JP (1985) Generation of optical pulses as short as 27 femtoseconds directly from a laser balancing self-phase modulation, group-velocity dispersion, saturable absorption, and saturable gain. Opt Lett 10:131ADSCrossRefGoogle Scholar
  137. Vashishta P, Kalia RK (1982) Universal behavior of exchange-correlation energy in electron-hole liquid. Phys Rev B 25:6492ADSCrossRefGoogle Scholar
  138. Viña L (1999) Spin relaxation in low-dimensional systems. J Phys Condens Matter 11:5929ADSCrossRefGoogle Scholar
  139. Viña L, Damen TC, Cunningham JE, Shah J, Sham LJ (1992) Spin relaxation dynamics in GaAs quantum wells: free carriers and excitons. Superlatt Microstruct 12:379ADSCrossRefGoogle Scholar
  140. von der Linde D (1979) Picosecond spectroscopy: methods and applications. In: Treusch J (ed) Festkörperprobleme, vol 19. Advances in solid state physics. Vieweg, Braunschweig, pp 387–402Google Scholar
  141. von der Linde D, Kuhl J, Klingenberg H (1980) Raman scattering from nonequilibrium LO phonons with picosecond resolution. Phys Rev Lett 44:1505ADSCrossRefGoogle Scholar
  142. Wei H, Guo G-C, He L (2014) Slow exciton spin relaxation in single self-assembled In1-xGaxAs/GaAs quantum dots. Phys Rev B 89:245305ADSCrossRefGoogle Scholar
  143. Wiley JD (1975) Mobility of holes in III-V compounds. In: Willardson RK, Beer AC (eds) Semiconductors and semimetals, vol 10. Academic Press, New York, pp 91–174Google Scholar
  144. Worlock JM, Damen TC, Shaklee KL, Gordon JP (1974) Determination of the optical properties and absolute concentrations of electron-hole drops in germanium. Phys Rev Lett 33:771ADSCrossRefGoogle Scholar
  145. Yafet Y (1963) g factors and spin-lattice relaxation of conduction electrons. In: Seitz F, Turnbull D (eds) Solid state physics, vol 14. Academic Press, New York, pp 1–98Google Scholar
  146. Yamamoto Y, Tassone F, Cao H (2000) Semiconductor cavity quantum electrodynamics. Springer, Berlin/New YorkGoogle Scholar
  147. Yoffa EJ (1981) Screening of hot-carrier relaxation in highly photoexcited semiconductors. Phys Rev B 23:1909ADSCrossRefGoogle Scholar
  148. Yoshida H, Saito H, Shionoya S (1981) Luminescence and inter-valence band hole relaxation in high density electron-hole plasma in CdSe and CdS. J Phys Soc Jpn 50:881ADSCrossRefGoogle Scholar
  149. Zheludev NI, Brummell MA, Harley RT, Malinowski A, Popov SV, Ashenford DE, Lunn B (1994) Giant specular inverse faraday effect in Cd0.6Mn0.4Te. Sol State Commun 89:823ADSCrossRefGoogle Scholar
  150. Zimmermann J, Lugli P, Ferry DK (1981) Non-equilibrium hot carrier diffusion phenomena in semiconductors I, a theoretical non-Markovian approach. J Physique 42(Colloq C7):95Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Institut für Festkörperphysik, EW5-1Technische Universität BerlinBerlinGermany
  2. 2.NaplesUSA

Personalised recommendations