• Karl W. Böer
  • Udo W. PohlEmail author
Living reference work entry

Latest version View entry history



Free carriers, causing an increase in electrical conductivity, can optically be generated either intrinsically by band-to-band absorption or extrinsically involving defect states in the bandgap. Photoconductivity provides information about carrier excitation and relaxation processes and hence about electronically significant imperfections. Photoconductors can be substantially sensitized by doping with slow recombination centers. An exceedingly long dwell time for carriers captured in traps may induce persistent photoconductivity. A related very small recombination cross-section occurs for deep impurities with a large lattice relaxation. Photoconductivity can be quenched (reduced) by a shift of minority carriers from predominantly slow to fast recombination centers. Such a shift can be induced optically with additional long-wavelength light, as well as thermally or by an electric field.


Activator Capture cross-section Extrinsic photoconductivity Intrinsic photoconductivity Negative photoconductivity Persistent photoconductivity Photoconductivity Photo-ionization cross-section Quenching Recombination center Sensitization Trap 


  1. Bethe HA, Salpeter EE (1957) Mechanics of one and two-electron atoms. Springer, BerlinCrossRefGoogle Scholar
  2. Bhattacharya PK, Dhar S (1988) Deep levels in III-V compound semiconductors grown by molecular beam epitaxy. In: Willardson RK, Beer AC (eds) Semiconductors and semimetals, vol 25. Academic Press, Boston, pp 143–228Google Scholar
  3. Brinza M, Willekens J, Benkhedir ML, Emelianova EV, Adriaenssens GJ (2005) Photoconductivity methods in materials research. J Mater Sci Mater Electron 16:703CrossRefGoogle Scholar
  4. Bube RH (1978) Photoconductivity of solids. Krieger, HuntingtonzbMATHGoogle Scholar
  5. Bube RH, Ho CT (1966) Laser saturation of photoconductivity and determination of imperfection parameters in sensitive photoconductors. J Appl Phys 37:4132ADSCrossRefGoogle Scholar
  6. Capasso F (ed) (1990) Physics of quantum electron devices. Springer, HeidelbergGoogle Scholar
  7. Celler GK, Mishra S, Bray R (1975) Saturation of impurity photoconductivity in n-GaAs with intense YAG laser light. Appl Phys Lett 27:297ADSCrossRefGoogle Scholar
  8. Dussel GA, Böer KW (1970) Field-enhanced ionization. Phys Status Solidi B 39:375ADSCrossRefGoogle Scholar
  9. Grimmeiss HG, Ledebo L-Å (1975) Spectral distribution of photoionization cross sections by photoconductivity measurements. J Appl Phys 46:2155ADSCrossRefGoogle Scholar
  10. Grimmeiss HG, Kullendorff N, Broser R (1981) Photocapacitance studies of CdS:Cu. J Appl Phys 52:3405ADSCrossRefGoogle Scholar
  11. Hornbeck JA, Haynes JR (1955) Trapping of minority carriers in silicon. I. p-type silicon. Phys Rev 97:311ADSCrossRefGoogle Scholar
  12. Hu Y, Schøn H, Øyvind N, Øvrelid EJ, Arnberg L (2012) Investigating minority carrier trapping in n-type Cz silicon by transient photoconductance measurements. J Appl Phys 111:053101ADSCrossRefGoogle Scholar
  13. Jaros M (1977) Wave functions and optical cross sections associated with deep centers in semiconductors. Phys Rev B 16:3694ADSCrossRefGoogle Scholar
  14. Lang DV, Logan RA (1977) Large-lattice-relaxation model for persistent photoconductivity in compound semiconductors. Phys Rev Lett 39:635ADSCrossRefGoogle Scholar
  15. Lang DV, Logan RA, Jaros M (1979) Trapping characteristics and a donor-complex (DX) model for the persistent-photoconductivity trapping center in Te-doped AlxGa1−xAs. Phys Rev B 19:1015ADSCrossRefGoogle Scholar
  16. Lucovsky G (1965) On the photoionization of deep impurity centers in semiconductors. Solid State Commun 3:299ADSCrossRefGoogle Scholar
  17. Marfaing Y (1980) Photoconductivity, photoelectric effects. In: Moss TS, Balkanski M (eds) Handbook on semiconductors, vol 2. Optical properties of solids. North Holland Publishing, Amsterdam, pp 417–495Google Scholar
  18. Northrop GA, Mooney PM (1991) Confirmation of large lattice relaxation of the DX center by extended photo-ionization cross-section measurements. J Electron Mater 20:13ADSCrossRefGoogle Scholar
  19. Queisser HJ (1971) Deep Impurities. In: Madelung O (ed) Festkörperprobleme/Advances in solid state physics, vol 11. Vieweg, Braunschweig, pp 45–64Google Scholar
  20. Queisser HJ, Theodorou DE (1979) Hall-effect analysis of persistent photocurrents in n-GaAs layers. Phys Rev Lett 43:401ADSCrossRefGoogle Scholar
  21. Rose A (1978) Concepts of photoconductivity and allied problems. Krieger Publishing, New YorkGoogle Scholar
  22. Ryvkin SM (1964) Photoelectric effects in semiconductors. Consultants Bureau, New YorkGoogle Scholar
  23. Schubert MC, Riepe S, Bermejo S, Warta W (2006) Determination of spatially resolved trapping parameters in silicon with injection dependent carrier density imaging. J Appl Phys 99:114908ADSCrossRefGoogle Scholar
  24. Schüler N, Hahn T, Schmerler S, Hahn S, Dornich K, Niklas JR (2010) Simulations of photoconductivity and lifetime for steady state and nonsteady state measurements. J Appl Phys 107:064901ADSCrossRefGoogle Scholar
  25. Stillman GE, Wolfe CM, Dimmock JO (1977) Far-infrared photoconductivity in high purity GaAs. In: Willardson RK, Beer AC (eds) Semiconductors and semimetals, vol 12. Infrared detectors II. Academic Press, New York, pp 169–290CrossRefGoogle Scholar
  26. Theodorou DE, Queisser HJ, Bauser E (1982) Profiling of deep impurities by persistent photocurrent measurements. Appl Phys Lett 41:628ADSCrossRefGoogle Scholar
  27. Ursaki VV, Tiginyanu IM, Ricci PC, Anedda A, Hubbard S, Pavlidis D (2003) Persistent photoconductivity and optical quenching of photocurrent in GaN layers under dual excitation. J Appl Phys 94:3875ADSCrossRefGoogle Scholar
  28. Yasutake K, Kakiuchi H, Takeuchi A, Yoshii K, Kawabe H (1997) Deep level characterization in semi-insulating GaAs by photo-induced current and photo-Hall effect transient spectroscopy. Bull Jpn Soc Precis Eng 63:264CrossRefGoogle Scholar
  29. Yodogawa Y, Shimizu K, Kanamori H (1973) Field quenching in photoconductive CdSe films. Jpn J Appl Phys 12:711ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2020

Authors and Affiliations

  1. 1.NaplesUSA
  2. 2.Institut für Festkörperphysik, EW5-1Technische Universität BerlinBerlinGermany

Personalised recommendations