Skip to main content

Carrier Transport Induced and Controlled by Defects

Semiconductor Physics
  • 226 Accesses

Abstract

With a large density of impurities or other lattice defects, the carrier transport deviates substantially from the classical transport within the band. It is carried within energy ranges (within the bandgap), which are determined by the defect structure. Heavy doping produces predominant defect levels split into two impurity bands. Below a density to permit sufficient tunneling, carrier transport requires excitation into the conduction band; at higher defect density, a diffusive transport within the upper impurity band becomes possible. At further increased defect density, metallic conductivity within the then unsplit impurity band occurs.

In amorphous semiconductors, tunneling-induced carrier transport can take place within the tail of states, which extend from the conduction or valence band into the bandgap. Major carrier transport starts at an energy referred to as the mobility edge. With statistically distributed defects, only some volume elements may become conductive. These volume elements widen at increasing temperature, eventually providing an uninterrupted percolation path through a highly doped or disordered semiconductor with a density-related threshold of conduction.

Conductance in organic semiconductors is governed by static and dynamic disorder. Band conductance in small-molecule crystals shows a decreasing carrier mobility at increased temperature with a power law similar to that of inorganic semiconductors. Small-molecule or polymer semiconductors with dominating static disorder show hopping conductance with a typically low but increasing mobility at higher temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    It should, however, depend on the microscopic atomic arrangement and on the coordination (Mott and Kaveh 1985).

  2. 2.

    In highly disordered semiconductors the motion may occur through excited states with greater overlap of their eigenfunctions.

  3. 3.

    In a crystalline structure, k, when closer to the center of the Brilloin zone, represents points in real space farther away from the unit cell; in this case long-range deviation from periodicity becomes important. In contrast, when λ k ≅ 1, the wave number is closer to the boundaries of the Brillouin zone; wheras in real space, the corresponding points are closer to the unit cell and the structure of the amorphous material resembles more that of a crystal.

  4. 4.

    Hopping conduction can also involve small polarons which move by hopping from site to site, ions which hop from interstitial to interstitial site, electrons which hop between soliton-bound states in one-dimensional conductors (acetylene) (Kivelson 1982), or Frenkel excitons in molecularcrystals (see Sect. 5 and references in Böttger and Bryksin 1985).

  5. 5.

    The excited state has essentially ionic charge character.

References

  • Abrahams E, Anderson PW, Licciardello DC, Ramakrishnan TV (1979) Scaling theory of localization: absence of quantum diffusion in two dimensions. Phys Rev Lett 42:673

    Article  ADS  Google Scholar 

  • Adler D (1980) Electronic correlations, polarons, and hopping transport. In: Moss TS, Paul W (eds) Handbook on semiconductors, Theory and transport properties, vol 1. North Holland Publishing Company, Amsterdam, pp 805–841

    Google Scholar 

  • Altshuler BL, Aronov AG, Lee PA (1980) Interaction effects in disordered Fermi systems in two dimensions. Phys Rev Lett 44:1288

    Article  ADS  Google Scholar 

  • Apsley N, Davis EA, Troup AP, Yoffee AD (1978) Electronic properties of ion-bombarded evaporated germanium and silicon. J Phys C 11:4983

    Article  ADS  Google Scholar 

  • Arias AC, MacKenzie JD, McCulloch I, Rivnay J, Salleo A (2010) Materials and applications for large area electronics: solution-based approaches. Chem Rev 110:3

    Article  Google Scholar 

  • Aronov AG, Mirlin DN, Nikitin LP, Reshina II, Sapega VF (1979) Determination of the inter-band transition time in the valence band of gallium arsenide. Sov Phys JETP 29:62

    Google Scholar 

  • Aronzon BA, Chumakov NK (1994) Quantum effects and the phase diagram of the electronic system of highly compensated semiconductors in magnetic field. Physica B 194–196:1167

    Article  Google Scholar 

  • Bässler H (1993) Charge transport in disordered organic photoconductors. Phys Status Solidi B 175:15

    Article  ADS  Google Scholar 

  • Bässler H, Köhler A (2012) Charge transport in organic semiconductors. Top Curr Chem 312:1

    Article  Google Scholar 

  • Bloch AN, Carruthers TF, Poehler TO, Cowan DO (1977) The organic metallic state: some physical aspects and chemical trends. In: Keller HJ (ed) Chemistry and physics in one-dimensional metals. Plenum Press, New York, pp 47–85

    Chapter  Google Scholar 

  • Blom PWM, Vissenberg MCJM (2000) Charge transport in poly(p-phenylene vinylene) light-emitting diodes. Mater Sci Eng 27:53

    Article  Google Scholar 

  • Blom PWM, de Jong MJM, van Munster MG (1997) Electric-field and temperature dependence of the hole mobility in poly(p-phenylene vinylene). Phys Rev B 55:R656

    Article  ADS  Google Scholar 

  • Böer KW (1972) Perturbed bands in real semiconducting glasses. J Non-Cryst Sol 8–10:586

    Article  Google Scholar 

  • Böttger H, Bryksin VV (1979) Effective medium theory for the hopping conductivity in high electrical fields. Phys Status Solidi B 96:219

    Article  ADS  Google Scholar 

  • Böttger H, Bryksin VV (1980) Investigation of non-Ohmic hopping conduction by methods of percolation theory. Philos Mag B 42:297

    Article  ADS  Google Scholar 

  • Böttger H, Bryksin VV (1985) Hopping conduction in solids. VCH-Verlagsgesellschaft, Weinheim

    Google Scholar 

  • Braun CL (1980) Organic semiconductors. In: Moss TS, Keller SP (eds) Handbook on semiconductors, Materials properties and preparation, vol 3. North Holland Publications, Amsterdam, pp 857–873

    Google Scholar 

  • Broadbent SR, Hammersley JM (1957) Percolation processes I. Crystals and mazes. Proc Camb Philos Soc 53:629

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Bullot J, Schmidt MP (1987) Physics of amorphous silicon-carbon alloys. Phys Status Solidi B 143:345

    Article  ADS  Google Scholar 

  • Butcher PN (1972) On the rate equation formulation of the hopping conductivity problem. J Phys C 5:1817

    Article  ADS  Google Scholar 

  • Cheng YC, Silbey RJ, da Silva Filho DA, Calbert JP, Cornil J, Brédas JL (2003) Three-dimensional band structure and bandlike mobility in oligoacene single crystals: a theoretical investigation. J Chem Phys 118:3764

    Article  ADS  Google Scholar 

  • Ching WY, Huber DL (1982) Numerical studies of energy levels and eigenfunction localization in dilute three-dimensional systems with exponential interactions. Phys Rev B 25:1096

    Article  ADS  Google Scholar 

  • Coropceanu V, Cornil J, da Silva Filho DA, Olivier Y, Silbey R, Bredas JL (2007) Charge transport in organic semiconductors. Chem Rev 107:926

    Article  Google Scholar 

  • Davidov AS (1962) Theory of molecular excitons. McGraw-Hill, New York

    Google Scholar 

  • Donchev V, Shtinkov N, Germanova K (1997) Effect of random defect density fluctuations on the Fermi level in highly compensated semiconductors. Mater Sci Eng B 47:131

    Article  Google Scholar 

  • Dresner J (1983) Hall effect and hole transport in B-doped a-Si:H. J Non-Cryst Sol 58:353

    Article  ADS  Google Scholar 

  • Druger SD (1975) Theory of charge transport processes. In: Birks JB (ed) Organic molecular photophysics, vol 2. Wiley, London, pp 313–394

    Google Scholar 

  • Efros AL, Shklovskii BI (1975) Coulomb gap and low temperature conductivity of disordered systems. J Phys C 8:L49

    Article  ADS  Google Scholar 

  • Efros AL, Shklovskii BI, Yanchev IY (1972) Impurity conductivity in low compensated semiconductors. Phys Status Solidi B 50:45

    Article  ADS  Google Scholar 

  • Elliott SR (1977) A theory of a.c. conduction in chalcogenide glasses. Philos Mag 36:1291

    Article  ADS  Google Scholar 

  • Elliott SR (1978) Defect states in amorphous silicon. Philos Mag B 38:325

    Article  ADS  Google Scholar 

  • Emin D (1975) Phonon-assisted transition rates I. Optical-phonon-assisted hopping in solids. Adv Phys 24:305

    Article  ADS  Google Scholar 

  • Frenkel J (1938) On pre-breakdown phenomena in insulators and electronic semi-conductors. Phys Rev 54:647

    Article  ADS  Google Scholar 

  • Fritzsche H, Cuevas M (1960) Impurity conduction in transmutation-doped p-type germanium. Phys Rev 119:1238

    Article  ADS  Google Scholar 

  • Gadzhiev AR, Ryvkin SM, Shlimak IS (1972) Fast-neutron-compensated n-germanium as a model of amorphous semiconductors. Sov Phys JETP 15:428

    Google Scholar 

  • Gather MC, Köhnen A, Meerholz K (2011) White organic light-emitting diodes. Adv Mater 23:233

    Article  Google Scholar 

  • Goodings EP (1976) Conductivity and superconductivity in polymers. Chem Soc Rev 5:95

    Article  Google Scholar 

  • Greenwood DA (1958) The Boltzmann equation in the theory of electrical conduction in metals. Proc Phys Soc Lond 71:585

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Grünewald M, Thomas P, Würtz D (1981) The sign anomaly of the Hall effect in amorphous tetrahedrally bonded semiconductors: a chemical-bond orbital approach. J Phys C 14:4083

    Article  ADS  Google Scholar 

  • Hacker K, Obermair G (1970) Stark ladders in a one-band-model. Z Phys 234:1

    Article  ADS  Google Scholar 

  • Haegel NM, Samperi SA, White AM (2003) Electric field and responsivity modeling for far-infrared blocked impurity band detectors. J Appl Phys 93:1305

    Article  ADS  Google Scholar 

  • Hains AW, Liang Z, Woodhouse MA, Gregg BA (2010) Molecular semiconductors in organic photovoltaic cells. Chem Rev 110:6689

    Article  Google Scholar 

  • Halperin BI, Lax M (1966) Impurity-band tails in the high-density limit. I. Minimum counting methods. Phys Rev 148:722

    Article  ADS  Google Scholar 

  • Hauser JJ (1975) Hopping conductivity in amorphous carbon films. Solid State Commun 17:1577

    Article  ADS  Google Scholar 

  • Heeger AJ (1981) Semiconducting and metallic polymers: new science with potential for new technology. Comments Sol State Phys 10:53

    Google Scholar 

  • Heeger AJ, MacDairmid AG (1980) Conducting organic polymers: doped polyacetylene. In: Alcàcer L (ed) The physics and chemistry of low-dimensional solids. Reidel, Dordrecht, pp 353–391

    Google Scholar 

  • Holstein T (1959) Polaron band narrowing. Ann Phys 8:325. ibid 8:343

    Article  ADS  MATH  Google Scholar 

  • Horring NJ (1969) Quantum theory of static shielding of an impurity charge by an electron gas plasma in a magnetic field. Ann Phys 54:405

    Article  ADS  Google Scholar 

  • Hubbard J (1963) Electron correlations in narrow energy bands. Proc R Soc Lond A 276:238

    Article  ADS  Google Scholar 

  • Huckestein B, Schweitzer L (1993) Multifractality and anomalous diffusion at the mobility edge in disordered systems. J Non-Cryst Sol 164:461

    Article  ADS  Google Scholar 

  • Hung LS, Chen CH (2002) Recent progress of molecular organic electroluminescent materials and devices. Mater Sci Eng 39:143

    Article  Google Scholar 

  • Ioffe AF, Regel AR (1960) Non-crystalline, amorphous and liquid electronic semiconductors. Prog Semicond 4:237

    Google Scholar 

  • Kane EO (1963) Thomas-Fermi approach to impure semiconductor band structure. Phys Rev 131:79

    Article  ADS  MATH  Google Scholar 

  • Karl N (1984) Organic semiconductors. Landoldt-Börnstein/Springer, Heidelberg

    Google Scholar 

  • Karl N (2001) Charge-carrier mobility in organic crystals. In: Farchioni R, Grosso G (eds) Organic electronic materials: conjugated polymers and low molecular weight organic solids. Springer, Berlin, pp 283–326

    Chapter  Google Scholar 

  • Keller HJ (ed) (1977) Chemistry and physics in one-dimensional metals. Plenum Press, New York

    Google Scholar 

  • Kivelson S (1982) Electron hopping in a soliton band: conduction in lightly doped (CH)x. Phys Rev B 25:3798

    Article  ADS  Google Scholar 

  • Kivelson S, Chapman OL (1983) Polyacene and a new class of quasi-one-dimensional conductors. Phys Rev B 28:7236

    Article  ADS  Google Scholar 

  • Knotek ML, Pollak M, Donovan TM, Kurtzman H (1973) Thickness dependence of hopping transport in amorphous-Ge films. Phys Rev Lett 30:853

    Google Scholar 

  • Knotek ML, Pollak M (1974) Correlation effects in hopping conduction: a treatment in terms of multielectron transitions. Phys Rev B 9:664

    Article  ADS  Google Scholar 

  • Krivoglaz MA (1974) Fluctuon states of electrons. Sov Phys Usp (Engl Transl) 16:856

    Article  ADS  Google Scholar 

  • Kubo R (1956) A general expression for the conductivity tensor. Can J Phys 34:1274

    Article  ADS  MathSciNet  Google Scholar 

  • Kubo R (1957) Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems. J Phys Soc Jpn 12:570

    Article  ADS  MathSciNet  Google Scholar 

  • Kuroda H, Kobayashi M, Kinoshita M, Takemoto S (1962) Semiconductive properties of tetracyanoethylene complexes and their absorption spectra. J Chem Phys 36:457

    Article  ADS  Google Scholar 

  • LeComber PG, Madan A, Spear WE (1972) Electronic transport and state distribution in amorphous Si films. J Non-Cryst Sol 11:219

    Article  ADS  Google Scholar 

  • Lifshitz IM (1965) Energy spectrum structure and quantum states of disordered condensed systems. Sov Phys Usp (Engl Transl) 7:549

    Article  ADS  MathSciNet  Google Scholar 

  • Maekawa S (1970) Nonlinear conduction of ZnS in strong electric fields. Phys Rev Lett 24:1175

    Article  ADS  Google Scholar 

  • Marchetti AP, Kearns DR (1970) Photoelectron emission from aromatic and metalloorganic hydrocarbons. Mol Cryst Liq Cryst 6:299

    Google Scholar 

  • Mazuruk K, Benzaquen M, Walsh D (1989) Coulomb gap and screening in impurity bands. Solid State Commun 69:337

    Article  ADS  Google Scholar 

  • McInnes JA, Butcher PN (1979) Numerical calculations of dc hopping conductivity. Philos Mag B 39:1

    Article  ADS  Google Scholar 

  • Miller A, Abrahams E (1960) Impurity conduction at low concentrations. Phys Rev 120:745

    Article  ADS  MATH  Google Scholar 

  • Mott NF (1968) Conduction in glasses containing transition metal ions. J Non-Cryst Sol 1:1

    Article  ADS  Google Scholar 

  • Mott NF (1969) Conduction in non-crystalline materials. Philos Mag 19:835

    Article  ADS  Google Scholar 

  • Mott NF (1991) The sign of the Hall effect in amorphous silicon. Philos Mag B 63:3

    Article  ADS  Google Scholar 

  • Mott NF (1993) Conduction in non-crystalline materials, 2nd edn. Clarendon Press, Oxford

    Google Scholar 

  • Mott NF, Davis EA (1979) Electronic processes in noncrystalline materials. Claredon Press, Oxford, UK

    Google Scholar 

  • Mott NF, Kaveh M (1985) Metal-insulator transitions in non-crystalline systems. Adv Phys 34:329

    Article  ADS  Google Scholar 

  • Mulliken RS (1952) A comparative survey of approximate ground state wave functions of helium atom and hydrogen molecule. Proc Nat Akad Sci 38:160

    Article  ADS  MATH  Google Scholar 

  • Noriega R, Salleo A (2012) Charge transport theories in organic semiconductors. In: Klauk H (ed) Organic electronics II. Wiley-VCH, Weinheim, pp 67–104

    Chapter  Google Scholar 

  • Okamoto H, Hattori K, Hamakawa Y (1993) Hall effect near the mobility edge. J Non-Cryst Sol 164–166:445

    Article  Google Scholar 

  • Overhof H, Beyer W (1981) A model for the electronic transport in hydrogenated amorphous silicon. Philos Mag B 43:433

    Article  ADS  Google Scholar 

  • Peumans P, Yakimov A, Forrest SR (2003) Small molecular weight organic thin-film photodetectors and solar cells. J Appl Phys 93:3693

    Article  ADS  Google Scholar 

  • Pollak M (1972) A percolation treatment of dc hopping conduction. J Non-Cryst Solids 11:1

    Article  ADS  Google Scholar 

  • Pope M, Swenberg CE (1982) Electronic processes in organic crystals. Oxford University Press, Oxford

    Google Scholar 

  • Priour DJ Jr (2012) Electronic states in one-, two-, and three-dimensional highly amorphous materials: a tight-binding treatment. Phys Rev B 85:014209

    Article  ADS  Google Scholar 

  • Pronin KA, Bandrauk AD, Ovchinnikov AA (1994) Electric-field-induced localization and non-perturbative response of a one-dimensional conductor. J Phys Condens Matter 6:4721

    Article  ADS  Google Scholar 

  • Rosenbaum TF, Andres K, Thomas GA, Bhatt RN (1980) Sharp metal-insulator transition in a random solid. Phys Rev Lett 45:1723

    Article  ADS  Google Scholar 

  • Ryvkin SM, Shlimak IS (1973) A doped highly compensated crystal semiconductor as a model of amorphous semiconductors. Phys Status Solidi A 16:515

    Article  ADS  Google Scholar 

  • Schein LB (1977) Temperature independent drift mobility along the molecular direction of As2S3. Phys Rev B 15:1024

    Article  ADS  Google Scholar 

  • Schlenker C, Marezio M (1980) The order–disorder transition of Ti3+–Ti3+ pairs in Ti4O7 and (Ti1-xVx)4O7. Philos Mag B 42:453

    Article  ADS  Google Scholar 

  • Schnakenberg J (1968) Polaronic impurity hopping conduction. Phys Status Solidi B 28:623

    Article  ADS  Google Scholar 

  • Shante VKS, Kirkpatrick S (1971) An introduction to percolation theory. Adv Phys 20:325

    Article  ADS  Google Scholar 

  • Shi Q, Hou Y, Lu J, Jin H, Yunbai L, Yan L, Sun X, Liu J (2006) Enhancement of carrier mobility in MEH-PPV film prepared under presence of electric field. Chem Phys Lett 425:353

    Article  ADS  Google Scholar 

  • Shin D-H, Becker CE, Harris JJ, Fernández JM, Woods NJ, Thornton TJ, Maude DK, Portal J-C (1999) Variable-range hopping transport in modulation-doped n-channel Si/Si1-xGex quantum well structures. Semicond Sci Technol 14:762

    Article  ADS  Google Scholar 

  • Shklovskii BI, Efros AL (1984) Electronic properties of doped semiconductors. Springer, Berlin

    Book  Google Scholar 

  • Sirringhaus H, Tessler N, Friend RH (1998) Integrated optoelectronic devices based on conjugated polymers. Science 280:1741

    Article  ADS  Google Scholar 

  • Soos ZG (1974) Theory of π-molecular charge-transfer crystals. Annu Rev Phys Chem 25:121

    Article  ADS  Google Scholar 

  • Spear WE (1974) Electronic transport and localization in low mobility solids and liquids. Adv Phys 23:523

    Article  ADS  Google Scholar 

  • Thouless DJ (1974) Electrons in disordered systems and the theory of localization. Phys Rep 13:93

    Article  ADS  Google Scholar 

  • Thouless DJ (1980) Resistance and localization in thin films and wires. J Non-Cryst Sol 35:3

    Article  ADS  Google Scholar 

  • Tiedje T (1984) Information about band-tail states from time-of-flight experiments. In: Willardson RK, Beer AC, Ji P (eds) Semiconductors and semimetals, vol 21C. Academic, New York, pp 207–238

    Google Scholar 

  • Wang X, Wang B, Hou L, Xie W, Chen X, Pan M (2015) Design consideration of GaAs-based blocked-impurity-band detector with the absorbing layer formed by ion implantation. Opt Quant Electron 47:1347

    Article  Google Scholar 

  • Wannier GH (1960) Wave functions and effective hamiltonian for Bloch electrons in an electric field. Phys Rev 117:432

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Warta W, Stehle R, Karl N (1985) Ultrapure, high mobility organic photoconductors. Appl Phys A Mater Sci Process 36:163

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl W. Böer .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Böer, K.W., Pohl, U.W. (2017). Carrier Transport Induced and Controlled by Defects. In: Semiconductor Physics. Springer, Cham. https://doi.org/10.1007/978-3-319-06540-3_28-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06540-3_28-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06540-3

  • Online ISBN: 978-3-319-06540-3

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Carrier Transport Induced and Controlled by Defects
    Published:
    04 August 2022

    DOI: https://doi.org/10.1007/978-3-319-06540-3_28-5

  2. Carrier Transport Induced and Controlled by Defects
    Published:
    26 March 2020

    DOI: https://doi.org/10.1007/978-3-319-06540-3_28-4

  3. Carrier Transport Induced and Controlled by Defects
    Published:
    28 September 2017

    DOI: https://doi.org/10.1007/978-3-319-06540-3_28-3

  4. Carrier Transport Induced and Controlled by Defects
    Published:
    22 April 2017

    DOI: https://doi.org/10.1007/978-3-319-06540-3_28-2

  5. Original

    Carrier Transport Induced and Controlled by Defects
    Published:
    24 February 2017

    DOI: https://doi.org/10.1007/978-3-319-06540-3_28-1