Carrier Transport in Low-Dimensional Semiconductors

  • Karl W. Böer
  • Udo W. PohlEmail author
Living reference work entry

Latest version View entry history



Carrier transport in semiconductors with reduced dimensions is determined by the low-dimensional density of states. In two-dimensional systems such as quantum wells and superlattices, the carrier mobility is highly anisotropic. Parallel to the barriers it may exceed the bulk value by far in a two-dimensional electron gas at low temperature. Perpendicular to the interfaces, carriers have to penetrate the barriers and the mobility is low. Tunneling through thin barriers is an important process; it is enhanced when matched with quantized energy levels and leads to negative differential resistance. In one-dimensional quantum wires, ballistic transport occurs and the conductance gets quantized. Transport through a zero-dimensional quantum dot is affected by charging with single electrons, giving rise to a Coulomb blockade with zero conduction at certain bias values.


Ballistic transport Bloch oscillations Carrier mobility Coherent tunneling Conductance quantization Coulomb blockade Coulomb diamond High-field domain Landauer-Büttiker formalism Landauer formula Negative differential resistance One-dimensional transport Resonant tunneling diode Sequential tunneling Transmission coefficient Tunneling Quantum-cascade laser Quantum wire Single-electron tunneling Subband Two-dimensional electron gas Wannier–Stark ladder Zero-dimensional transport 


  1. Ahmed H, Nakazato K (1996) Single-electron devices. Microelectron Engin 32:297CrossRefGoogle Scholar
  2. Ando T, Fowler AB, Stern F (1982) Electronic properties of two-dimensional systems. Rev Mod Phys 54:437CrossRefADSGoogle Scholar
  3. Beenakker CWJ, van Houten H (1991) Quantum transport in semiconductor nanostructures. Solid State Phys 44:1CrossRefGoogle Scholar
  4. Berggren K-F, Pepper M (2010) Electrons in one dimension. Phil Trans R Soc A 368:1141CrossRefADSGoogle Scholar
  5. Björk MT, Thelander C, Hansen AE, Jensen LE, Larsson MW, Wallenberg LR, Samuelson L (2004) Few-electron quantum dots in nanowires. Nano Lett 4:1621CrossRefADSGoogle Scholar
  6. Blumenthal MD, Kaestner B, Li L, Giblin S, Janssen TJBM, Pepper M, Anderson D, Jones G, Ritchie DA (2007) Gigahertz quantized charge pumping. Nature Phys 3:343CrossRefADSGoogle Scholar
  7. Brennan KF, Summers CJ (1987a) Theory of resonant tunneling in a variably spaced multiquantum well structure: an Airy function approach. J Appl Phys 61:614CrossRefADSGoogle Scholar
  8. Brennan KF, Summers CJ (1987b) The variably spaced superlattice energy filter quantum well avalanche photodiode: a solid-state photomultiplier. IEEE J Quantum Electron 23:320CrossRefADSGoogle Scholar
  9. Büttiker M (1986) Negative resistance fluctuations at resistance minima in narrow quantum hall conductors. Phys Rev B 38:12724CrossRefADSGoogle Scholar
  10. Capasso F (1987) Band-gap engineering: from physics and materials to new semiconductor devices. Science 235:172CrossRefADSGoogle Scholar
  11. Capasso F (2010) High-performance midinfrared quantum cascade lasers. Opt Eng 49:111102CrossRefADSGoogle Scholar
  12. Capasso F, Mohammed K, Cho A (1986) Resonant tunneling through double barriers, perpendicular quantum transport phenomena in superlattices, and their device applications. IEEE J Quantum Electron 22:1853CrossRefADSGoogle Scholar
  13. Capasso F, Sen F, Beltram F, Cho AY (1990) Resonant tunneling and superlattices devices: physics and circuits. In: Capasso F (ed) Physics of quantum electron devices. Springer, Berlin, pp 181–252CrossRefGoogle Scholar
  14. Chen T-M, Graham AC, Pepper M, Farrer I, Ritchie DA (2008) Bias-controlled spin polarization in quantum wires. Appl Phys Lett 93:032102CrossRefADSGoogle Scholar
  15. Choi KK, Levine BF, Bethea CG, Walker J, Malik RJ (1987a) Photoexcited coherent tunneling in a double-barrier superlattice. Phys Rev Lett 59:2459CrossRefADSGoogle Scholar
  16. Choi KK, Levine BF, Malik RJ, Walker J, Bethea CG (1987b) Periodic negative conductance by sequential resonant tunneling through an expanding high-field superlattice domain. Phys Rev B 35:4172CrossRefADSGoogle Scholar
  17. Danneau R, Klochan O, Clarke WR, Ho LH, Micolich AP, Simmons MY, Hamilton AR, Pepper M, Ritchie DA, Zülicke U (2006) Zeeman splitting in ballistic hole quantum wires. Phys Rev Lett 97:026403CrossRefADSGoogle Scholar
  18. Engquist H-L, Anderson PW (1981) Definition and measurement of the electrical and thermal resistances. Phys Rev B 24:1151CrossRefADSGoogle Scholar
  19. Esaki L, Chang LL (1974) New transport phenomenon in a semiconductor “superlattice”. Phys Rev Lett 33:495CrossRefADSGoogle Scholar
  20. Esaki L, Tsu R (1970) Superlattice and negative differential conductivity in semiconductors. IBM J Res Dev 14:61CrossRefGoogle Scholar
  21. Faist J (2013) Quantum cascade lasers. Oxford University Press, OxfordCrossRefGoogle Scholar
  22. Faist J, Capasso F, Sivco DL, Sirtori C, Hutchinson AL, Cho AY (1994) Quantum cascade laser. Science 264:553CrossRefADSGoogle Scholar
  23. Faist J, Capasso F, Sirtori C, Sivco DL, Hutchinson AL, Hybertsen MS, Cho AY (1996) Quantum cascade lasers without intersubband population inversion. Phys Rev Lett 76:411CrossRefADSGoogle Scholar
  24. Ferreira R, Bastard G (1989) Evaluation of some scattering times for electrons in unbiased and biased single- and multiple-quantum-well structures. Phys Rev B 40:1074CrossRefADSGoogle Scholar
  25. Ferry DK, Goodnick SM, Bird J (2009) Transport in nanostructures, 2nd edn. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  26. Giorgetta FR, Baumann E, Graf M, Yang Q, Manz C, Kohler K, Beere HE, Ritchie DA, Linfield E, Davies AG, Fedoryshyn Y, Jackel H, Fischer M, Faist J (2009) Quantum cascade detectors. IEEE J Quantum Electron 45:1039CrossRefADSGoogle Scholar
  27. Harrer A, Schwarz B, Schuler S, Reininger P, Wirthmüller A, Detz H, MacFarland D, Zederbauer T, Andrews AM, Rothermund M, Oppermann H, Schrenk W, Strasser G (2016) 4.3 μm quantum cascade detector in pixel configuration. Opt Express 24:17041CrossRefADSGoogle Scholar
  28. Harris JJ, Foxon CT, Lacklison DE, Barnham KWJ (1986) Scattering mechanisms in (Al, Ga)As/GaAs 2DEG structures. Superlattice Microstruc 2:563CrossRefADSGoogle Scholar
  29. Harris JJ, Pals JA, Woltjer R (1989) Electronic transport in low-dimensional structures. Rep Prog Phys 52:1217CrossRefADSGoogle Scholar
  30. Hartig M, Haacke S, Selbmann P, Deveaud B, Taylor R, Rota L (1998) Efficient intersubband scattering via carrier-carrier interaction in quantum wells. Phys Rev Lett 80:1940CrossRefADSGoogle Scholar
  31. Hayden RK, Maude DK, Eaves L, Valadares EC, Henini M, Sheard FW, Hughes OH, Portal JC, Cury L (1991) Probing the hole dispersion curves of a quantum well using resonant magnetotunneling spectroscopy. Phys Rev Lett 66:1749CrossRefADSGoogle Scholar
  32. Hess K (1981) Lateral transport in superlattices. J de Physique 42:C7,3Google Scholar
  33. Hirakawa K, Sakaki H (1986) Mobility of the two-dimensional electron gas at selectively doped n-type AlxGa1−xAs/GaAs heterojunctions with controlled electron concentrations. Phys Rev B 33:8291CrossRefADSGoogle Scholar
  34. Inoue M (1985) Hot electron transport in quantum wells. Superlattice Microstruc 1:433CrossRefADSGoogle Scholar
  35. Kastrup J, Grahn HT, Ploog K, Prengel F, Wacker A, Schöll E (1994) Multistability of the current–voltage characteristics in doped GaAs-AlAs superlattices. Appl Phys Lett 65:1808CrossRefADSGoogle Scholar
  36. Kastrup J, Hey R, Ploog KH, Grahn HT, Bonilla LL, Kindelan M, Moscoso M, Wacker A, Galán J (1997) Electrically tunable GHz oscillations in doped GaAs-AlAs superlattices. Phys Rev B 55:2476CrossRefADSGoogle Scholar
  37. Keever M, Kopp W, Drummond TJ, Morkoç H, Hess K (1982) Current transport in modulation-doped AlxGa1-xAs/GaAs heterojunction structures at moderate field strengths. Jpn J Appl Phys 21:1489CrossRefADSGoogle Scholar
  38. Keller MW, Eichenberger AL, Martinis JM, Zimmerman NMA (1999) Capacitance standard based on counting electrons. Science 285:1706CrossRefGoogle Scholar
  39. Köhler R, Tredicucci A, Beltram F, Beere HE, Linfield EH, Davies AG, Ritchie DA, Iotti RC, Ross F (2002) Terahertz semiconductor-heterostructure laser. Nature 417:156CrossRefADSGoogle Scholar
  40. Kouwenhoven LP, McEuen PL (1999) Single electron transport through a quantum dot. In: Timp GL (ed) Nanotechnology. Springer, New York, pp 471–535CrossRefGoogle Scholar
  41. Kouwenhoven LP, van der Vaart NC, Johnson AT, Kool W, Harmans CJPM, Williamson JG, Staring AAM, Foxon CT (1991) Single electron charging effects in semiconductor quantum dots. Z Phys B 85:367CrossRefADSGoogle Scholar
  42. Kouwenhoven LP, Marcus CM, McEuen PL, Tarucha S, Westervelt RM, Wingreen ND (1997) Electron transport in quantum dots. In: Sohn LL, Kouwenhoven LP, Schön G (eds) Mesoscopic electron transport. Springer, Dordrecht, pp 105–214CrossRefGoogle Scholar
  43. Kouwenhoven LP, Austing DG, Tarucha S (2001) Few-electron quantum dots. Rep Prog Phys 64:701CrossRefADSGoogle Scholar
  44. Kristensen A, Bruus H, Hansen AE, Jensen JB, Lindelof PE, Marckmann CJ, Nygård J, Sørensen CB, Beuscher F, Forchel A, Miche M (2000) Bias and temperature dependence of the 0.7 conductance anomaly in quantum point contacts. Phys Rev B 62:10950CrossRefADSGoogle Scholar
  45. Kwok SH, Grahn HT, Ramsteiner M, Ploog K, Prengel F, Wacker A, Schöll E, Murugkar S, Merlin R (1995) Nonresonant carrier transport through high-field domains in semiconductor superlattices. Phys Rev B 51:9943CrossRefADSGoogle Scholar
  46. Landauer R (1957) Spatial variation of currents and fields due to localized scatterers in metallic conduction. IBM J Res Dev 1:223CrossRefMathSciNetGoogle Scholar
  47. Laux SE, Frank DJ, Stern F (1988) Quasi-one-dimensional electron states in a split-gate GaAs/AlGaAs heterostructure. Surf Sci 196:101CrossRefADSGoogle Scholar
  48. Leisching P, Haring Bolivar P, Beck W, Dhaibi Y, Brüggemann F, Schwedler R, Kurz H, Leo K, Köhler K (1994) Bloch oscillations of excitonic wave packets in semiconductor superlattices. Phys Rev B 50:14389CrossRefADSGoogle Scholar
  49. Lu SL, Schrottke L, Teitsworth SW, Hey R, Grahn HT (2006) Formation of electric-field domains in GaAs/AlxGa1−xAs quantum cascade laser structures. Phys Rev B 73:033311CrossRefADSGoogle Scholar
  50. Lyssenko V, Leo K (2011) Bloch oscillations and ultrafast coherent optical phenomena. In: Bhattacharya P, Fornari R, Kamimura H (eds) Comprehensive semiconductor science and technology, vol 2: Physics and fundamental theory. Elsevier BV, Amsterdam, pp 343–399Google Scholar
  51. Meir Y, Wingreen NS, Lee PA (1991) Transport through a strongly interacting electron system: theory of periodic conductance oscillations. Phys Rev Lett 66:3048CrossRefADSGoogle Scholar
  52. Meirav U, Kastner MA, Wind SJ (1990) Single-electron charging and periodic conductance resonances in GaAs nanostructures. Phys Rev Lett 65:771CrossRefADSGoogle Scholar
  53. Mendez EE, Agullo-Rueda F, Hong JM (1988) Stark localization in GaAs-GaAlAs superlattices under an electric field. Phys Rev Lett 60:2426CrossRefADSGoogle Scholar
  54. Morkoç H (1985) Modulation-doped AlxGa1-xAs/GaAs heterostructures. In: Parker EHC (ed) The technology and physics of molecular beam epitaxy. Plenum Press, New York, p 185CrossRefGoogle Scholar
  55. Morkoç H, Chen J, Reddy UK, Henderson T, Luryi S (1986) Observation of a negative differential resistance due to tunneling through a single barrier into a quantum well. Appl Phys Lett 49:70CrossRefADSGoogle Scholar
  56. Nixon JA, Davies JH, Baranger HU (1991) Conductance of quantum point contacts calculated using realistic potentials. Superlattice Microstruc 9:187Google Scholar
  57. Pfeiffer LN, West KW, Störmer HL, Baldwin KW (1989) Electron mobilities exceeding 107 cm2/Vs in modulation-doped GaAs. Appl Phys Lett 55:1888CrossRefADSGoogle Scholar
  58. Piazza V, Casarini P, De Franceschi S, Lazzarino M, Beltram F, Jacoboni C, Bosacchi A, Franchi S (1998) Self-consistent electron-mobility calculation in a modulation-doped two-dimensional electron gas. Phys Rev B 57:10017CrossRefADSGoogle Scholar
  59. Reed MA, Randall JN, Aggarwal RJ, Matyi RJ, Moore TM, Wetsel AE (1988) Observation of discrete electronic states in a zero-dimensional semiconductor nanostructure. Phys Rev Lett 60:535CrossRefADSGoogle Scholar
  60. Reimann SM, Manninen M (2002) Electronic structure of quantum dots. Rev Mod Phys 74:1283CrossRefADSGoogle Scholar
  61. Rossi A, Tanttu T, Tan KY, Iisakka I, Zhao R, Chan KW, Tettamanzi GC, Rogge S, Dzurak AS, Möttönen M (2014) An accurate single-electron pump based on a highly tunable silicon quantum dot. Nano Lett 14:3405Google Scholar
  62. Schomburg E, Henini M, Chamberlain JM, Steenson DP, Brandl S, Hofbeck K, Renk KF, Wegscheider W (1999) Self-sustained current oscillation above 100 GHz in a GaAs/AlAs superlattice. Appl Phys Lett 74:2179CrossRefADSGoogle Scholar
  63. Shin SJ, Lee JJ, Kang HJ, Choi JB, Yang S-RE, Takahashi Y, Hasko DG (2011) Room-temperature charge stability modulated by quantum effects in a nanoscale silicon island. Nano Lett 1:1591CrossRefADSGoogle Scholar
  64. Stern F (1972) Self-consistent results for n-type Si inversion layers. Phys Rev B 5:4891CrossRefADSGoogle Scholar
  65. Stern F, Das Sarma S (1984) Electron energy levels in GaAs-Ga1−xAlxAs heterojunctions. Phys Rev B 30:840CrossRefADSGoogle Scholar
  66. Störmer HL, Dingle R, Gossard AC, Wiegmann W, Sturge MD (1979) Two-dimensional electron gas at a semiconductor-semiconductor interface. Solid State Commun 29:705CrossRefADSGoogle Scholar
  67. Störmer HL, Gossard AC, Wiegmann W (1982) Observation of intersubband scattering in a 2-dimensional electron system. Solid State Commun 41:707CrossRefADSGoogle Scholar
  68. Tarucha S, Austing DG, Honda T, van der Hage RJ, Kouwenhoven LP (1996) Shell filling and spin effects in a few electron quantum dot. Phys Rev Lett 77:3613CrossRefADSGoogle Scholar
  69. Thomas KJ, Nicholls JT, Appleyard NJ, Simmons MY, Pepper M, Mace DR, Tribe WR, Ritchie DA (1998) Interaction effects in a one-dimensional constriction. Phys Rev B 58:4846CrossRefADSGoogle Scholar
  70. Thornton TJ (1994) Mesoscopic devices. Rep Prog Phys 58:311CrossRefADSGoogle Scholar
  71. Thornton TJ, Pepper M, Ahmed H, Andrews D, Davies GJ (1986) One-dimensional conduction in the 2D electron gas of a GaAs-AlGaAs heterojunction. Phys Rev Lett 56:1198CrossRefADSGoogle Scholar
  72. Thornton TJ, Roukes ML, Scherer A, Van de Gaag BP (1989) Boundary scattering in quantum wires. Phys Rev Lett 63:2128CrossRefADSGoogle Scholar
  73. Tkachenko OA, Tkachenko VA, Baksheyev DG, Pyshkin KS, Harrell RH, Linfield EH, Ritchie DA, Ford CJB (2001) Electrostatic potential and quantum transport in a one-dimensional channel of an induced two-dimensional electron gas. J Appl Phys 89:4993CrossRefADSGoogle Scholar
  74. van Wees BJ, van Houten H, Beenakker CWJ, Williamson JG, Kouwenhoven LP, van der Marel D, Foxon CT (1988) Quantized conductance of point contacts in a two-dimensional electron gas. Phys Rev Lett 60:848CrossRefADSGoogle Scholar
  75. Vitiello MS, Scalari G, Williams B, De Natale P (2015) Quantum cascade lasers: 20 years of challenges. Opt Express 23:5167CrossRefADSGoogle Scholar
  76. Voisin P, Bleuse J, Bouche C, Gaillard S, Alibert C, Regreny A (1988) Observation of the Wannier-Stark quantization in a semiconductor superlattice. Phys Rev Lett 61:1639CrossRefADSGoogle Scholar
  77. Wacker A (2002) Semiconductor superlattices: a model system for nonlinear transport. Phys Rep 357:1CrossRefADSzbMATHGoogle Scholar
  78. Wharam DA, Thornton TJ, Newbury R, Pepper M, Ahmed H, Frost JEF, Hasko DG, Peacockt DC, Ritchie DA, Jones GAC (1988) One-dimensional transport and the quantisation of the ballistic resistance. J Phys C Solid State Phys 21:L209CrossRefADSGoogle Scholar
  79. Zhang Y, Klann R, Ploog K, Grahn HT (1997) Observation of bistability in GaAs/AlAs superlattices. Appl Phys Lett 70:2825CrossRefADSGoogle Scholar
  80. Zheng HZ, Wei HP, Tsui DC, Weimann G (1986) Gate-controlled transport in narrow GaAs/AlxGa1-xAs heterostructures. Phys Rev B 34:5635CrossRefADSGoogle Scholar

Copyright information

© Springer International Publishing AG 2020

Authors and Affiliations

  1. 1.NaplesUSA
  2. 2.Institut für Festkörperphysik, EW5-1Technische Universität BerlinBerlinGermany

Personalised recommendations