Skip to main content

Carrier Transport in Low-Dimensional Semiconductors

  • 298 Accesses

Abstract

Carrier transport in semiconductors with reduced dimensions is determined by the low-dimensional density of states. In two-dimensional systems such as quantum wells and superlattices, the carrier mobility is highly anisotropic. Parallel to the barriers it may exceed the bulk value by far in a two-dimensional electron gas at low temperature. Perpendicular to the interfaces, carriers have to penetrate the barriers and the mobility is low. Tunneling through thin barriers is an important process; it is enhanced when matched with quantized energy levels and leads to negative differential resistance. In one-dimensional quantum wires, ballistic transport occurs and the conductance gets quantized. Transport through a zero-dimensional quantum dot is affected by charging with single electrons, giving rise to a Coulomb blockade with zero conduction at certain bias values.

This is a preview of subscription content, log in via an institution.

Notes

  1. 1.

    The analogous system with holes as free carriers is called two-dimensional hole gas (2DHG) . Due to their smaller effective mass usually electrons are preferred as carriers in transport devices.

  2. 2.

    Such a device is also referred to as high-electron-mobility transistor (HEMT) or two-dimensional electron gas field-effect transitor (TEGFET). Typical Al mole fraction x of Al x Ga1-x As and donor-doping level are 0.30 cm−3 and 1018 cm−3, respectively. Donor doping stops at a spacer distance d (typically on the order of 10 nm, see Fig. 5) away from the interface to GaAs.

  3. 3.

    For resonant tunneling of holes, see, e.g., Hayden et al. (1991).

  4. 4.

    Heavy holes in the valence band get localized much stronger due to their larger effective mass.

  5. 5.

    A nonthermal electron distribution in the active region makes laser action possible even in the absence of a global population inversion, see Faist et al. (1996).

  6. 6.

    The transfer from E 2 to E 1 gets particularly efficient if their difference equals the energy of an LO phonon, thereby inducing resonant electron-LO-phonon scattering.

  7. 7.

    The current is usually measured by applying a slow continuous sweep of the bias. As the branches overlap, different parts of the branches are observed for sweep-up and sweep-down.

  8. 8.

    We focus again on electron gases; one-dimensional transport structures made using 2DHGs (two-dimensional hole gases) were studied as well, see, e.g., Danneau et al. (2006).

  9. 9.

    In the classical description the phase correlation of the carrier wavefunctions before and after scattering are destroyed. In the description of quantum diffusion the phase correlation is limited by inelastic scattering events only; the corresponding mean scattering time τ ϕ is at low temperatures significantly larger than τ.

  10. 10.

    The conduction step 2e 2/h corresponds to a resistance of 12907 Ω.

  11. 11.

    The degeneracy may already be lifted at zero magnetic field if there is a spontaneous spin polarization due to electron interactions (Chen et al. 2008), see the section on the “0.7 conduction anomaly” below.

  12. 12.

    Instead of a factor T also a factor T/(1−T) = T/R is found in literature. The difference arises from the location where V 1,2 is measured. In a two-terminal measurement with I and V measured through the same pair of leads a factor T results, while an ideal (noninvasive) four-terminal measurement yields a factor T/R; for a small T of the conductor both measurements coincide; for details see Engquist and Anderson (1981).

  13. 13.

    This requirement for R tunnel is related to Heisenberg’s uncertainty relation: quantum fluctuations in the number of electrons on the dot due to tunneling through the barriers must be much less than one for the duration of measurement. In addition, the charging energy must exceed the thermal energy (see text). The characteristic discharging time of the dot is then Δτ = R tunnel C dot, and the uncertainty relation yields ΔEΔτ = (e 2/C dot) R tunnel C dot > h, or R tunnel > h/e 2.

  14. 14.

    If the considered disk is replaced by a sphere, the factor 8 in the capacitance formula is replaced by a factor 4π. The simple consideration in the text does neither include single-particle energies of a dot with charge Ne nor external charges or capacities (e.g., from a gate electrode).

  15. 15.

    The level spacing is given by the scaling ħ 2 π 2/(m n L 2) times a factor, which depends on the dimensionality of the “dot” (Kouwenhoven and McEuen 1999); L is the size of the confining box. In 1D, 2D, and 3D the factors are given by N/4, 1/π, and 1/(3 π2 N), respectively. The spacing in lateral dots (2D) does not depend on the number of confined electrons N.

References

  • Ahmed H, Nakazato K (1996) Single-electron devices. Microelectron Engin 32:297

    Article  Google Scholar 

  • Ando T, Fowler AB, Stern F (1982) Electronic properties of two-dimensional systems. Rev Mod Phys 54:437

    Article  ADS  Google Scholar 

  • Beenakker CWJ, van Houten H (1991) Quantum transport in semiconductor nanostructures. Solid State Phys 44:1

    Article  Google Scholar 

  • Berggren K-F, Pepper M (2010) Electrons in one dimension. Phil Trans R Soc A 368:1141

    Article  ADS  Google Scholar 

  • Björk MT, Thelander C, Hansen AE, Jensen LE, Larsson MW, Wallenberg LR, Samuelson L (2004) Few-electron quantum dots in nanowires. Nano Lett 4:1621

    Article  ADS  Google Scholar 

  • Blumenthal MD, Kaestner B, Li L, Giblin S, Janssen TJBM, Pepper M, Anderson D, Jones G, Ritchie DA (2007) Gigahertz quantized charge pumping. Nature Phys 3:343

    Article  ADS  Google Scholar 

  • Brennan KF, Summers CJ (1987a) Theory of resonant tunneling in a variably spaced multiquantum well structure: an Airy function approach. J Appl Phys 61:614

    Article  ADS  Google Scholar 

  • Brennan KF, Summers CJ (1987b) The variably spaced superlattice energy filter quantum well avalanche photodiode: a solid-state photomultiplier. IEEE J Quantum Electron 23:320

    Article  ADS  Google Scholar 

  • Büttiker M (1986) Negative resistance fluctuations at resistance minima in narrow quantum hall conductors. Phys Rev B 38:12724

    Article  Google Scholar 

  • Capasso F (1987) Band-gap engineering: from physics and materials to new semiconductor devices. Science 235:172

    Article  ADS  Google Scholar 

  • Capasso F (2010) High-performance midinfrared quantum cascade lasers. Opt Eng 49:111102

    Article  ADS  Google Scholar 

  • Capasso F, Mohammed K, Cho A (1986) Resonant tunneling through double barriers, perpendicular quantum transport phenomena in superlattices, and their device applications. IEEE J Quantum Electron 22:1853

    Article  ADS  Google Scholar 

  • Capasso F, Sen F, Beltram F, Cho AY (1990) Resonant tunneling and superlattices devices: physics and circuits. In: Capasso F (ed) Physics of quantum electron devices. Springer, Berlin, pp 181–252

    Chapter  Google Scholar 

  • Chen T-M, Graham AC, Pepper M, Farrer I, Ritchie DA (2008) Bias-controlled spin polarization in quantum wires. Appl Phys Lett 93:032102

    Article  ADS  Google Scholar 

  • Choi KK, Levine BF, Bethea CG, Walker J, Malik RJ (1987a) Photoexcited coherent tunneling in a double-barrier superlattice. Phys Rev Lett 59:2459

    Article  ADS  Google Scholar 

  • Choi KK, Levine BF, Malik RJ, Walker J, Bethea CG (1987b) Periodic negative conductance by sequential resonant tunneling through an expanding high-field superlattice domain. Phys Rev B 35:4172

    Article  ADS  Google Scholar 

  • Danneau R, Klochan O, Clarke WR, Ho LH, Micolich AP, Simmons MY, Hamilton AR, Pepper M, Ritchie DA, Zülicke U (2006) Zeeman splitting in ballistic hole quantum wires. Phys Rev Lett 97:026403

    Article  ADS  Google Scholar 

  • Engquist H-L, Anderson PW (1981) Definition and measurement of the electrical and thermal resistances. Phys Rev B 24:1151

    Article  ADS  Google Scholar 

  • Esaki L, Chang LL (1974) New transport phenomenon in a semiconductor “superlattice”. Phys Rev Lett 33:495

    Article  ADS  Google Scholar 

  • Esaki L, Tsu R (1970) Superlattice and negative differential conductivity in semiconductors. IBM J Res Dev 14:61

    Article  Google Scholar 

  • Faist J (2013) Quantum cascade lasers. Oxford University Press, Oxford

    Book  Google Scholar 

  • Faist J, Capasso F, Sivco DL, Sirtori C, Hutchinson AL, Cho AY (1994) Quantum cascade laser. Science 264:553

    Article  ADS  Google Scholar 

  • Faist J, Capasso F, Sirtori C, Sivco DL, Hutchinson AL, Hybertsen MS, Cho AY (1996) Quantum cascade lasers without intersubband population inversion. Phys Rev Lett 76:411

    Article  ADS  Google Scholar 

  • Ferreira R, Bastard G (1989) Evaluation of some scattering times for electrons in unbiased and biased single- and multiple-quantum-well structures. Phys Rev B 40:1074

    Article  ADS  Google Scholar 

  • Ferry DK, Goodnick SM, Bird J (2009) Transport in nanostructures, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Giorgetta FR, Baumann E, Graf M, Yang Q, Manz C, Kohler K, Beere HE, Ritchie DA, Linfield E, Davies AG, Fedoryshyn Y, Jackel H, Fischer M, Faist J (2009) Quantum cascade detectors. IEEE J Quantum Electron 45:1039

    Article  ADS  Google Scholar 

  • Harrer A, Schwarz B, Schuler S, Reininger P, Wirthmüller A, Detz H, MacFarland D, Zederbauer T, Andrews AM, Rothermund M, Oppermann H, Schrenk W, Strasser G (2016) 4.3 μm quantum cascade detector in pixel configuration. Opt Express 24:17041

    Article  ADS  Google Scholar 

  • Harris JJ, Foxon CT, Lacklison DE, Barnham KWJ (1986) Scattering mechanisms in (Al, Ga)As/GaAs 2DEG structures. Superlattice Microstruc 2:563

    Article  ADS  Google Scholar 

  • Harris JJ, Pals JA, Woltjer R (1989) Electronic transport in low-dimensional structures. Rep Prog Phys 52:1217

    Article  ADS  Google Scholar 

  • Hartig M, Haacke S, Selbmann P, Deveaud B, Taylor R, Rota L (1998) Efficient intersubband scattering via carrier-carrier interaction in quantum wells. Phys Rev Lett 80:1940

    Article  ADS  Google Scholar 

  • Hayden RK, Maude DK, Eaves L, Valadares EC, Henini M, Sheard FW, Hughes OH, Portal JC, Cury L (1991) Probing the hole dispersion curves of a quantum well using resonant magnetotunneling spectroscopy. Phys Rev Lett 66:1749

    Article  ADS  Google Scholar 

  • Hess K (1981) Lateral transport in superlattices. J de Physique 42:C7,3

    Article  Google Scholar 

  • Hirakawa K, Sakaki H (1986) Mobility of the two-dimensional electron gas at selectively doped n-type AlxGa1−xAs/GaAs heterojunctions with controlled electron concentrations. Phys Rev B 33:8291

    Article  ADS  Google Scholar 

  • Inoue M (1985) Hot electron transport in quantum wells. Superlattice Microstruc 1:433

    Article  ADS  Google Scholar 

  • Kastrup J, Grahn HT, Ploog K, Prengel F, Wacker A, Schöll E (1994) Multistability of the current–voltage characteristics in doped GaAs-AlAs superlattices. Appl Phys Lett 65:1808

    Article  ADS  Google Scholar 

  • Kastrup J, Hey R, Ploog KH, Grahn HT, Bonilla LL, Kindelan M, Moscoso M, Wacker A, Galán J (1997) Electrically tunable GHz oscillations in doped GaAs-AlAs superlattices. Phys Rev B 55:2476

    Article  ADS  Google Scholar 

  • Keever M, Kopp W, Drummond TJ, Morkoç H, Hess K (1982) Current transport in modulation-doped AlxGa1-xAs/GaAs heterojunction structures at moderate field strengths. Jpn J Appl Phys 21:1489

    Article  ADS  Google Scholar 

  • Keller MW, Eichenberger AL, Martinis JM, Zimmerman NMA (1999) Capacitance standard based on counting electrons. Science 285:1706

    Article  Google Scholar 

  • Köhler R, Tredicucci A, Beltram F, Beere HE, Linfield EH, Davies AG, Ritchie DA, Iotti RC, Ross F (2002) Terahertz semiconductor-heterostructure laser. Nature 417:156

    Article  ADS  Google Scholar 

  • Kouwenhoven LP, McEuen PL (1999) Single electron transport through a quantum dot. In: Timp GL (ed) Nanotechnology. Springer, New York, pp 471–535

    Chapter  Google Scholar 

  • Kouwenhoven LP, van der Vaart NC, Johnson AT, Kool W, Harmans CJPM, Williamson JG, Staring AAM, Foxon CT (1991) Single electron charging effects in semiconductor quantum dots. Z Phys B 85:367

    Article  ADS  Google Scholar 

  • Kouwenhoven LP, Marcus CM, McEuen PL, Tarucha S, Westervelt RM, Wingreen ND (1997) Electron transport in quantum dots. In: Sohn LL, Kouwenhoven LP, Schön G (eds) Mesoscopic electron transport. Springer, Dordrecht, pp 105–214

    Chapter  Google Scholar 

  • Kouwenhoven LP, Austing DG, Tarucha S (2001) Few-electron quantum dots. Rep Prog Phys 64:701

    Article  ADS  Google Scholar 

  • Kristensen A, Bruus H, Hansen AE, Jensen JB, Lindelof PE, Marckmann CJ, Nygård J, Sørensen CB, Beuscher F, Forchel A, Miche M (2000) Bias and temperature dependence of the 0.7 conductance anomaly in quantum point contacts. Phys Rev B 62:10950

    Article  ADS  Google Scholar 

  • Kwok SH, Grahn HT, Ramsteiner M, Ploog K, Prengel F, Wacker A, Schöll E, Murugkar S, Merlin R (1995) Nonresonant carrier transport through high-field domains in semiconductor superlattices. Phys Rev B 51:9943

    Article  ADS  Google Scholar 

  • Landauer R (1957) Spatial variation of currents and fields due to localized scatterers in metallic conduction. IBM J Res Dev 1:223

    Article  MathSciNet  Google Scholar 

  • Laux SE, Frank DJ, Stern F (1988) Quasi-one-dimensional electron states in a split-gate GaAs/AlGaAs heterostructure. Surf Sci 196:101

    Article  ADS  Google Scholar 

  • Leisching P, Haring Bolivar P, Beck W, Dhaibi Y, Brüggemann F, Schwedler R, Kurz H, Leo K, Köhler K (1994) Bloch oscillations of excitonic wave packets in semiconductor superlattices. Phys Rev B 50:14389

    Article  ADS  Google Scholar 

  • Lu SL, Schrottke L, Teitsworth SW, Hey R, Grahn HT (2006) Formation of electric-field domains in GaAs/AlxGa1−xAs quantum cascade laser structures. Phys Rev B 73:033311

    Article  ADS  Google Scholar 

  • Lyssenko V, Leo K (2011) Bloch oscillations and ultrafast coherent optical phenomena. In: Bhattacharya P, Fornari R, Kamimura H (eds) Comprehensive semiconductor science and technology, vol 2: Physics and fundamental theory. Elsevier BV, Amsterdam, pp 343–399

    Google Scholar 

  • Meir Y, Wingreen NS, Lee PA (1991) Transport through a strongly interacting electron system: theory of periodic conductance oscillations. Phys Rev Lett 66:3048

    Article  ADS  Google Scholar 

  • Meirav U, Kastner MA, Wind SJ (1990) Single-electron charging and periodic conductance resonances in GaAs nanostructures. Phys Rev Lett 65:771

    Article  ADS  Google Scholar 

  • Mendez EE, Agullo-Rueda F, Hong JM (1988) Stark localization in GaAs-GaAlAs superlattices under an electric field. Phys Rev Lett 60:2426

    Article  ADS  Google Scholar 

  • Morkoç H (1985) Modulation-doped AlxGa1-xAs/GaAs heterostructures. In: Parker EHC (ed) The technology and physics of molecular beam epitaxy. Plenum Press, New York, p 185

    Chapter  Google Scholar 

  • Morkoç H, Chen J, Reddy UK, Henderson T, Luryi S (1986) Observation of a negative differential resistance due to tunneling through a single barrier into a quantum well. Appl Phys Lett 49:70

    Article  ADS  Google Scholar 

  • Nixon JA, Davies JH, Baranger HU (1991) Conductance of quantum point contacts calculated using realistic potentials. Superlattice Microstruc 9:187

    Google Scholar 

  • Pfeiffer LN, West KW, Störmer HL, Baldwin KW (1989) Electron mobilities exceeding 107 cm2/Vs in modulation-doped GaAs. Appl Phys Lett 55:1888

    Article  ADS  Google Scholar 

  • Piazza V, Casarini P, De Franceschi S, Lazzarino M, Beltram F, Jacoboni C, Bosacchi A, Franchi S (1998) Self-consistent electron-mobility calculation in a modulation-doped two-dimensional electron gas. Phys Rev B 57:10017

    Article  ADS  Google Scholar 

  • Reed MA, Randall JN, Aggarwal RJ, Matyi RJ, Moore TM, Wetsel AE (1988) Observation of discrete electronic states in a zero-dimensional semiconductor nanostructure. Phys Rev Lett 60:535

    Article  ADS  Google Scholar 

  • Reimann SM, Manninen M (2002) Electronic structure of quantum dots. Rev Mod Phys 74:1283

    Article  ADS  Google Scholar 

  • Rossi A, Tanttu T, Tan KY, Iisakka I, Zhao R, Chan KW, Tettamanzi GC, Rogge S, Dzurak AS, Möttönen M (2014) Nano Lett 14:3405

    Article  ADS  Google Scholar 

  • Schomburg E, Henini M, Chamberlain JM, Steenson DP, Brandl S, Hofbeck K, Renk KF, Wegscheider W (1999) Self-sustained current oscillation above 100 GHz in a GaAs/AlAs superlattice. Appl Phys Lett 74:2179

    Article  ADS  Google Scholar 

  • Shin SJ, Lee JJ, Kang HJ, Choi JB, Yang S-RE, Takahashi Y, Hasko DG (2011) Room-temperature charge stability modulated by quantum effects in a nanoscale silicon island. Nano Lett 1:1591

    Article  ADS  Google Scholar 

  • Stern F (1972) Self-consistent results for n-type Si inversion layers. Phys Rev B 5:4891

    Article  ADS  Google Scholar 

  • Stern F, Das Sarma S (1984) Electron energy levels in GaAs-Ga1−xAlxAs heterojunctions. Phys Rev B 30:840

    Article  ADS  Google Scholar 

  • Störmer HL, Dingle R, Gossard AC, Wiegmann W, Sturge MD (1979) Two-dimensional electron gas at a semiconductor-semiconductor interface. Solid State Commun 29:705

    Article  ADS  Google Scholar 

  • Störmer HL, Gossard AC, Wiegmann W (1982) Observation of intersubband scattering in a 2-dimensional electron system. Solid State Commun 41:707

    Article  ADS  Google Scholar 

  • Tarucha S, Austing DG, Honda T, van der Hage RJ, Kouwenhoven LP (1996) Shell filling and spin effects in a few electron quantum dot. Phys Rev Lett 77:3613

    Article  ADS  Google Scholar 

  • Thomas KJ, Nicholls JT, Appleyard NJ, Simmons MY, Pepper M, Mace DR, Tribe WR, Ritchie DA (1998) Interaction effects in a one-dimensional constriction. Phys Rev B 58:4846

    Article  ADS  Google Scholar 

  • Thornton TJ (1994) Mesoscopic devices. Rep Prog Phys 58:311

    Article  ADS  Google Scholar 

  • Thornton TJ, Pepper M, Ahmed H, Andrews D, Davies GJ (1986) One-dimensional conduction in the 2D electron gas of a GaAs-AlGaAs heterojunction. Phys Rev Lett 56:1198

    Article  ADS  Google Scholar 

  • Thornton TJ, Roukes ML, Scherer A, Van de Gaag BP (1989) Boundary scattering in quantum wires. Phys Rev Lett 63:2128

    Article  ADS  Google Scholar 

  • Tkachenko OA, Tkachenko VA, Baksheyev DG, Pyshkin KS, Harrell RH, Linfield EH, Ritchie DA, Ford CJB (2001) Electrostatic potential and quantum transport in a one-dimensional channel of an induced two-dimensional electron gas. J Appl Phys 89:4993

    Article  ADS  Google Scholar 

  • van Wees BJ, van Houten H, Beenakker CWJ, Williamson JG, Kouwenhoven LP, van der Marel D, Foxon CT (1988) Quantized conductance of point contacts in a two-dimensional electron gas. Phys Rev Lett 60:848

    Article  ADS  Google Scholar 

  • Vitiello MS, Scalari G, Williams B, De Natale P (2015) Quantum cascade lasers: 20 years of challenges. Opt Express 23:5167

    Article  ADS  Google Scholar 

  • Voisin P, Bleuse J, Bouche C, Gaillard S, Alibert C, Regreny A (1988) Observation of the Wannier-Stark quantization in a semiconductor superlattice. Phys Rev Lett 61:1639

    Article  ADS  Google Scholar 

  • Wacker A (2002) Semiconductor superlattices: a model system for nonlinear transport. Phys Rep 357:1

    Article  ADS  MATH  Google Scholar 

  • Wharam DA, Thornton TJ, Newbury R, Pepper M, Ahmed H, Frost JEF, Hasko DG, Peacockt DC, Ritchie DA, Jones GAC (1988) One-dimensional transport and the quantisation of the ballistic resistance. J Phys C Solid State Phys 21:L209

    Article  ADS  Google Scholar 

  • Zhang Y, Klann R, Ploog K, Grahn HT (1997) Observation of bistability in GaAs/AlAs superlattices. Appl Phys Lett 70:2825

    Article  ADS  Google Scholar 

  • Zheng HZ, Wei HP, Tsui DC, Weimann G (1986) Gate-controlled transport in narrow GaAs/AlxGa1-xAs heterostructures. Phys Rev B 34:5635

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Udo W. Pohl .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Böer, K.W., Pohl, U.W. (2017). Carrier Transport in Low-Dimensional Semiconductors. In: Semiconductor Physics. Springer, Cham. https://doi.org/10.1007/978-3-319-06540-3_27-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06540-3_27-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06540-3

  • Online ISBN: 978-3-319-06540-3

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Carrier Transport in Low-Dimensional Semiconductors
    Published:
    06 August 2022

    DOI: https://doi.org/10.1007/978-3-319-06540-3_27-4

  2. Carrier Transport in Low-Dimensional Semiconductors
    Published:
    26 March 2020

    DOI: https://doi.org/10.1007/978-3-319-06540-3_27-3

  3. Carrier Transport in Low-Dimensional Semiconductors
    Published:
    27 September 2017

    DOI: https://doi.org/10.1007/978-3-319-06540-3_27-2

  4. Original

    Carrier Transport in Low-Dimensional Semiconductors
    Published:
    23 February 2017

    DOI: https://doi.org/10.1007/978-3-319-06540-3_27-1