Carriers in Magnetic Fields and Temperature Gradients

  • Karl W. Böer
  • Udo W. PohlEmail author
Living reference work entry

Latest version View entry history



The application of a magnetic field in addition to an electric field yields significant information on carrier polarity and mobility, on the effective mass, and on the origin of energy levels in paramagnetic centers. If a temperature gradient exists in addition to an electric field, thermoelectric effects occur with useful applications, such as the Seebeck effect rendering thermoelectricity used in thermocouples and the Peltier effect applied for cooling. If a magnetic field is added to the temperature gradient and to the electric field, several galvanomagnetic and thermomagnetic effects are observed.

In strong magnetic fields, the electronic density of states is changed: energy levels condense on quantized Landau levels with cylindrical equi-energy surfaces in k space. Quantities controlled by their vicinity to the Fermi energy then show an oscillatory dependence on the magnetic field, such as the DeHaas-van Alphen oscillations of the magnetic susceptibility and Shubnikov-DeHaas oscillations of the resistivity.

If scattering is suppressed in highly pure samples at very low temperature, a strong magnetic field forces carriers to propagate on edge states at the sample surface, creating a topological insulator with no conductance in the bulk. In a two-dimensional electron gas, this leads to the quantum Hall effect, which established an international metrological standard for the electrical resistance. The related fractional quantum Hall effect lead to the discovery of composite fermions, quasi-particles composed of an electron and flux quanta, which conjointly carry a fractional charge. The quantum spin Hall phase represents a third type of topological insulators, which require no external magnetic field.


DeHaas-van Alphen effect Fractional quantum Hall effect Galvanomagnetic effects Hall effect Hall mobility Landau levels Magnetoresistance Peltier effect Quantum Hall effect Quantum spin Hall phase Seebeck effect Shubnikov-DeHaas effect Thermoelectric effects Thermomagnetic effects Topological insulator 


  1. Abstreiter G (1998) Die Entdeckung des fraktionalen Quanten-Hall-Effekts. Phys Bl 54:1098 (The discovery of the fractional quantum Hall effect, in German)CrossRefGoogle Scholar
  2. Allen JW (1995) Spectroscopy of lattice defects in tetrahedral II-VI compounds. Semicond Sci Technol 10:1049CrossRefADSGoogle Scholar
  3. Bagraev NT, Mashkov VA (1986) Optical nuclear polarization and spin-dependent reactions in semiconductors. In: von Bardeleben HJ (ed) Defects in semiconductors, Mater Sci Forum, vol 10–12, pp 435–443. Trans Tech Publ, SwitzerlandGoogle Scholar
  4. Becker WM, Fan HY (1964) Magnetoresistance oscillations in n-GaSb. In: Hulin M (ed) Proc 7th international conference physics of semiconductors, Paris. Dumond, Paris, pp 663–667Google Scholar
  5. Beer AC (1963) Galvanomagnetic effects in semiconductors, vol Supplement 4, Solid state physics. Academic Press, New YorkzbMATHGoogle Scholar
  6. Bernevig BA, Hughes TL (2013) Topological insulators and topological superconductors. Princeton University Press, PrincetonCrossRefzbMATHGoogle Scholar
  7. Bernevig BA, Zhang S-C (2006) Quantum spin Hall effect. Phys Rev Lett 96:106802CrossRefADSGoogle Scholar
  8. Brooks H (1955) Theory of the electrical properties of germanium and silicon. Adv Electron Electron Phys 7:85CrossRefGoogle Scholar
  9. Cavenett BC (1981) Optically detected magnetic resonance (O.D.M.R.) investigations of recombination processes in semiconductors. Adv Phys 30:475CrossRefADSGoogle Scholar
  10. Chang AM, Berglund P, Tsui DC, Stormer HL, Hwang JCM (1984) Higher-order states in the multiple-series, fractional, quantum Hall effect. Phys Rev Lett 53:997CrossRefADSGoogle Scholar
  11. Conwell E (1982) Transport: the Boltzmann equation. In: Paul W, Moss TS (eds) Handbook on semiconductors, vol. 1. Band theory and transport properties. North Holland, Amsterdam, pp 513–561Google Scholar
  12. DeHaas WJ, van Alphen PM (1930) Note on the dependence of the susceptibility of diamagnetic metal on the field. Leiden Commun 208d and Leiden Commun 212aGoogle Scholar
  13. Firsov YA, Gurevich VL, Parfeniev RV, Shalyt SS (1964) Investigation of a new type of oscillations in the magnetoresistance. Phys Rev Lett 12:660CrossRefADSGoogle Scholar
  14. Friedman L (1971) Hall conductivity of amorphous semiconductors in the random phase model. J Non-Cryst Solids 6:329CrossRefADSGoogle Scholar
  15. Glicksman M (1958) The magnetoresistivity of germanium and silicon. In: Gibson AF (ed) Progress in semiconductors, vol 3. Wiley, New York, pp 1–26Google Scholar
  16. Gu Z-C, Wen X-G (2009) Tensor-entanglement-filtering renormalization approach and symmetry protected topological order. Phys Rev B 80:155131CrossRefADSGoogle Scholar
  17. Gurevich VL, Firsov YA (1964) A new oscillation mode of the longitudinal magnetoresistance of semiconductors. Sov Phys JETP 20:489Google Scholar
  18. Hasan MZ, Kane CL (2010) Topological insulators. Rev Mod Phys 82:3045CrossRefADSGoogle Scholar
  19. Haug A (1972) Theoretical solid state physics. Pergamon Press, OxfordGoogle Scholar
  20. Herring C (1955) Transport properties of a many-valley semiconductor. Bell Syst Tech J 34:237CrossRefGoogle Scholar
  21. Hübner J, Döhrmann S, Hägele D, Oestreich M (2009) Temperature-dependent electron Landé g factor and the interband matrix element of GaAs. Phys Rev B 79:193307CrossRefADSGoogle Scholar
  22. Jain JK (1989) Composite-fermion approach for the fractional quantum Hall effect. Phys Rev Lett 63:199CrossRefADSGoogle Scholar
  23. Jain JK (1990) Theory of the fractional quantum Hall effect. Phys Rev B 41:7653CrossRefADSGoogle Scholar
  24. Joseph AS, Thorsen AC (1965) Low-field de Haas-van Alphen effect in Ag. Phys Rev 138:A1159CrossRefADSGoogle Scholar
  25. Kane CL, Mele EJ (2005) Z2 topological order and the quantum spin Hall effect. Phys Rev Lett 95:146802CrossRefADSGoogle Scholar
  26. König M, Wiedmann S, Brüne C, Roth A, Buhmann H, Molenkamp LW, Qi X-L, Zhang S-C (2007) Quantum spin Hall insulator state in HgTe quantum wells. Science 318:766CrossRefADSGoogle Scholar
  27. Koyano M, Kurita R (1998) Magnetization of quasi-two-dimensional conductor η-Mo4O11. Solid State Commun 105:743CrossRefADSGoogle Scholar
  28. Landau LD (1933) Motion of electrons in a crystal lattice. Phys Z Sowjetunion 3:664Google Scholar
  29. Laughlin RB (1981) Quantized Hall conductivity in two dimensions. Phys Rev B 23:5632CrossRefADSGoogle Scholar
  30. Laughlin RB (1983) Anomalous quantum Hall effect: an incompressible quantum fluid with fractionally charged excitations. Phys Rev Lett 50:1395CrossRefADSGoogle Scholar
  31. Lax B, Roth LM, Zwerdling S (1959) Quantum magneto-absorption phenomena in semiconductors. J Phys Chem Solid 8:311CrossRefADSGoogle Scholar
  32. Madelung O (1981) Introduction to solid state theory, vol 2. Springer, BerlinGoogle Scholar
  33. McKelvey JP (1966) Solid state and semiconductor physics. Harper & Row, New YorkGoogle Scholar
  34. Onsager L (1952) Interpretation of the de Haas-van Alphen effect. Philos Mag 43:1006CrossRefGoogle Scholar
  35. Ortmann F, Roche S, Valenzuela SO (eds) (2015) Topological insulators. Wiley-VCH, WeinheimGoogle Scholar
  36. Pfeiffer LN, West KW, Störmer HL, Baldwin KW (1989) Electron mobilities exceeding 107 cm2/Vs in modulation-doped GaAs. Appl Phys Lett 55:1888CrossRefADSGoogle Scholar
  37. Pollmann F, Berg E, Turner AM, Oshikawa M (2012) Symmetry protection of topological phases in one-dimensional quantum spin systems. Phys Rev B 85:075125CrossRefADSGoogle Scholar
  38. Pollock DD (1985) Thermoelectricity: theory, thermometry, tool. ASTM, PhiladelphiaCrossRefGoogle Scholar
  39. Rose A (1978) Concepts in photoconductivity and allied problems. RE Krieger Publication Co, New YorkGoogle Scholar
  40. Roth LM, Lax B (1959) g factor of electrons in germanium. Phys Rev Lett 3:217Google Scholar
  41. Seeger K (2004) Semiconductor physics, 9th edn. Springer, BerlinCrossRefzbMATHGoogle Scholar
  42. Shen S-Q (2012) Topological insulators: Dirac equation in condensed matters. Springer, HeidelbergCrossRefzbMATHGoogle Scholar
  43. Shoenberg D (1969) Electronic structure: the experimental results. In: Ziman JM (ed) Physics of metals, vol 1. Cambridge University Press, Cambridge, UK, pp 62–112Google Scholar
  44. Shubnikov L, DeHaas WJ (1930) Magnetische Widerstandsvergrößerung in Einkristallen von Wismut bei tiefen Temperaturen. Leiden Commun 207a,c,d; and: Leiden Commun 210a (Magnetic increase of the resistance of bismuth at low temperatures, in German)Google Scholar
  45. Smith RA (1952) The physical properties of thermodynamics. Chapman & Hall, LondonGoogle Scholar
  46. Stormer HL, Tsui DC (1983) The quantized Hall effect. Science 220:1241CrossRefADSGoogle Scholar
  47. Stradling RA (1984) Studies of the free and bound magneto-polaron and associated transport experiments in n-InSb and other semiconductors. In: Devreese JT, Peeters FM (eds) Polarons and excitons in polar semiconductors and ionic crystals. Plenum Press, New YorkGoogle Scholar
  48. Tamura H, Ueda M (1996) Effects of disorder and electron–electron interactions on orbital magnetism in quantum dots. Physica B 227:21CrossRefADSGoogle Scholar
  49. Tauc J (1954) Theory of thermoelectric power in semiconductors. Phys Rev 95:1394CrossRefADSGoogle Scholar
  50. Thomson W (1857) On the electro-dynamic qualities of metals: effects of magnetization on the electric conductivity of nickel and of iron. Proc Roy Soc London 8:546CrossRefGoogle Scholar
  51. Tsui DC, Stormer HL (1986) The fractional quantum Hall effect. IEEE J Quantum Electron QE 22:1711CrossRefADSGoogle Scholar
  52. Tsui DC, Stormer HL, Gossard AC (1982) Two-dimensional magnetotransport in the extreme quantum limit. Phys Rev Lett 48:1559CrossRefADSGoogle Scholar
  53. Tsui DC, Janssen M, Viehweger O, Fastenrath U, Hajdu J (1994) Introduction to the theory of the integer quantum hall effect. VCH, WeinheimGoogle Scholar
  54. von Klitzing K (1981) Two-dimensional systems: a method for the determination of the fine structure constant. Surf Sci 113:1CrossRefGoogle Scholar
  55. von Klitzing K (1986) The quantized Hall effect. Rev Mod Phys 58:519CrossRefADSGoogle Scholar
  56. von Klitzing K, Dorda G, Pepper M (1980) New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Phys Rev Lett 45:494CrossRefADSGoogle Scholar
  57. White CRH, Davies M, Henini M, Davidson BR, Main PC, Owers-Bradley JR, Eaves L, Hughes OH, Heath M, Skolnick MS (1990) The observation of the fractional quantum Hall effect in a single (AlGa)As/GaAs/(AlGa)As quantum well. Semicond Sci Technol 5:792CrossRefADSGoogle Scholar
  58. Willardson RK, Harman TC, Beer AC (1954) Transverse Hall and magnetoresistance effects in p-type germanium. Phys Rev 96:1512CrossRefADSGoogle Scholar
  59. Willett R, Eisenstein JP, Störmer HL, Tsui DC, Gossard AC, English JH (1987) Observation of an even-denominator quantum number in the fractional quantum Hall effect. Phys Rev Lett 59:1776CrossRefADSGoogle Scholar
  60. Wilson AH (1954) The theory of metals. Cambridge University Press, Cambridge, UKCrossRefGoogle Scholar
  61. Xu HF, Shen ZZ (1994) Mechanism of refractive-index change in a Ce:SBN single crystal illuminated by nominal homogeneous light. Opt Lett 19:2092CrossRefADSGoogle Scholar
  62. Ziman JM (1972) Principles of the theory of solids. Cambridge University Press, Cambridge, UKCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2020

Authors and Affiliations

  1. 1.NaplesUSA
  2. 2.Institut für Festkörperphysik, EW5-1Technische Universität BerlinBerlinGermany

Personalised recommendations