Advertisement

Carrier-Transport Equations

  • Karl W. Böer
  • Udo W. PohlEmail author
Living reference work entry

Later version available View entry history

  • 116 Downloads

Abstract

The current in semiconductors is carried by electrons and holes. Their lattice polarization modifies the effective mass, expressed as a change to polarons. While for large polarons the effect is small, semiconductors with narrow bands and large lattice polarization show a significant effect described by small polarons. The total current is composed of a drift and a diffusion current of electrons and holes. The drift current is determined by the electric field, and the energy obtained by carrier acceleration is given to the lattice by inelastic scattering, which opposes the energy gain, causing a constant carrier-drift velocity and Joule’s heating. The diffusion current is proportional to the carrier gradient up to a limit given by the thermal velocity. Proportionality factor of both drift and diffusion currents is the carrier mobility, which is proportional to a relaxation time and inverse to the mobility effective mass. Currents are proportional to negative potential gradients, with the conductivity as the proportionality factor. In spatially inhomogeneous semiconductors, both an external field, impressed by an applied bias, and a built-in field, due to space-charge regions, exist. Only the external field causes carrier heating by shifting and deforming the carrier distribution from a Boltzmann distribution to a distorted distribution with more carriers at higher energies.

The Boltzmann equation permits a detailed analysis of the carrier transport and the carrier distribution, providing well-defined values for transport parameters such as relaxation times. The Boltzmann equation can be integrated in closed form only for a few special cases, but approximations for small applied fields provide the basis for investigating scattering processes; these can be divided into essentially elastic processes with mainly momentum exchange and, for carriers with sufficient accumulated energy, into inelastic scattering with energy relaxation.

Keywords

Boltzmann transport equation Built-in electric field Carrier heating Collision integral Conductivity Diffusion current Drift current Drift velocity Effective mass Einstein relation Energy relaxation Fröhlich coupling Inelastic and elastic scattering Joule’s heating Mean free path Mobility effective mass Momentum relaxation Polaron Polaron mass Polaron self-energy Quasi-Fermi level Relaxation time Relaxation-time approximation 

References

  1. Appel J (1968) Polarons. In: Seitz F, Turnbull D, Ehrenreich H (eds) Solid state physics, vol 21. Academic Press, New York, pp 193–391Google Scholar
  2. Bajaj KK (1968) Polaron in a magnetic field. Phys Rev 170:694ADSCrossRefGoogle Scholar
  3. Böer KW (1985a) High-field carrier transport in inhomogeneous semiconductors. Ann Phys 497:371CrossRefGoogle Scholar
  4. Böer KW (1985b) Current-voltage characteristics of diodes with and without light. Phys Status Solidi A 87:719ADSCrossRefGoogle Scholar
  5. Bogoliubov NN, Bogoliubov NN Jr (1986) Aspects of polaron theory. World Scientific Publishing, SingaporeGoogle Scholar
  6. Böttger H, Bryksin VV (1985) Hopping conduction in solids. Phys Status Solidi B 96:219ADSCrossRefGoogle Scholar
  7. Bray R (1969) A Perspective on acoustoelectric instabilities. IBM J Res Dev 13:487CrossRefGoogle Scholar
  8. Brazovskii S, Kirova N, Yu ZG, Bishop AR, Saxena A (1998) Stability of bipolarons in conjugated polymers. Opt Mater 9:502ADSCrossRefGoogle Scholar
  9. Chakraverty BK, Schlenker C (1976) On the existence of bipolarons in Ti4O7. J Physique (Paris) Colloq 37:C4–C353Google Scholar
  10. Chandrasekhar S (1943) Stochastic problems in physics and astronomy. Rev Mod Phys 15:1ADSMathSciNetCrossRefGoogle Scholar
  11. Chattopadhyay D, Rakshit PC, Kabasi A (1989) Diffusion of one- and two-dimensional hot electrons in semiconductor quantum-well structures at low temperatures. Superlattice Microstruct 6:399ADSCrossRefGoogle Scholar
  12. Christov SG (1982) Adiabatic polaron theory of electron hopping in crystals: a reaction-rate approach. Phys Rev B 26:6918ADSCrossRefGoogle Scholar
  13. Cohen MH, Economou EN, Soukoulis CM (1983) Electron-phonon interactions near the mobility edge in disordered semiconductors. J Non-Cryst Solids 59/60:15ADSCrossRefGoogle Scholar
  14. Comas F, Mora-Ramos ME (1989) Polaron effect in single semiconductor heterostructures. Physica B 159:413ADSCrossRefGoogle Scholar
  15. Conwell EM (1967) High-field transport in semiconductors. Academic Press, New YorkGoogle Scholar
  16. Conwell EM (1982) The Boltzmann equation. In: Paul W, Moss TS (eds) Handbook of semiconductors vol 1: band theory and transport properties. North Holland Publishing, Amsterdam, pp 513–561Google Scholar
  17. Devreese JT (1984) Some recent developments on the theory of polarons. In: Devreese JT, Peeters FM (eds) Polarons and excitons in polar semiconductors and ionic crystals. Plenum Press, New York, pp 165–183CrossRefGoogle Scholar
  18. Drude P (1900) Zur Elektronentheorie der Metalle. Ann Phys 1:566. (On the electron theory of metals, in German)CrossRefGoogle Scholar
  19. Dushman S (1930) Thermionic emission. Rev Mod Phys 2:381ADSCrossRefGoogle Scholar
  20. Emin D (1973) On the existence of free and self-trapped carriers in insulators: an abrupt temperature-dependent conductivity transition. Adv Phys 22:57ADSCrossRefGoogle Scholar
  21. Esaki L, Tsu R (1970) Superlattice and negative differential conductivity in semiconductors. IBM J Res Dev 14:61CrossRefGoogle Scholar
  22. Evrard R (1984) Polarons. In: Di Bartolo B (ed) Collective excitations in solids. Plenum Press, New York, pp 501–522Google Scholar
  23. Ferziger JD, Kaper HG (1972) Mathematical theory of transport processes in gasses. North Holland Publishing, AmsterdamGoogle Scholar
  24. Feynman RP (1955) Slow electrons in a polar crystal. Phys Rev 97:660ADSCrossRefGoogle Scholar
  25. Frenkel JI (1936) On the absorption of light and the trapping of electrons and positive holes in crystalline dielectrics. Sov Phys J 9:158zbMATHGoogle Scholar
  26. Fröhlich H, Pelzer H, Zienau S (1950) Properties of slow electrons in polar materials. Philos Mag (Ser 7) 41:221Google Scholar
  27. Haug A (1972) Theoretical solid state physics. Pergamon Press, OxfordGoogle Scholar
  28. Hayes W, Stoneham AM (1984) Defects and defect processes in nonmetallic solids. Wiley, New YorkGoogle Scholar
  29. Herring C (1954) Theory of the thermoelectric power of semiconductors. Phys Rev 96:1163ADSCrossRefGoogle Scholar
  30. Holstein T (1959) Studies of polaron motion Part 1: the molecular-crystal model. Ann Phys 8:325ADSCrossRefGoogle Scholar
  31. Horio K, Okada T, Nakatani A (1999) Energy transport simulation for graded HBT’s: importance of setting adequate values for transport parameters. IEEE Trans Electron Devices 46:641ADSCrossRefGoogle Scholar
  32. Hubner K, Shockley W (1960) Transmitted phonon drag measurements in silicon. Phys Rev Lett 4:504ADSCrossRefGoogle Scholar
  33. Kan EC, Ravaioli U, Chen D (1991) Multidimensional augmented current equation including velocity overshoot. IEEE Electron Device Lett 12:419ADSCrossRefGoogle Scholar
  34. Kartheuser E, Devreese JT, Evrard R (1979) Polaron mobility at low temperature: a self-consistent equation-of-motion approach. Phys Rev B 19:546ADSCrossRefGoogle Scholar
  35. Landau LD (1933) Electron motion in crystal lattices. Sov Phys J 3:664Google Scholar
  36. Landsberg PT (1952) On the diffusion theory of rectification. Proc R Soc Lond A Math Phys Sci 213:226ADSzbMATHGoogle Scholar
  37. Landsberg PT, Cheng HC (1985) Activity coefficient and Einstein relation for different densities of states in semiconductors. Phys Rev B 32:8021ADSCrossRefGoogle Scholar
  38. Lee TD, Low F, Pines D (1953) The motion of slow electrons in a polar crystal. Phys Rev 90:297ADSMathSciNetCrossRefGoogle Scholar
  39. Leo K (1996) Optical investigations of Bloch oscillations in semiconductor superlattices. Phys Scripta T68:78ADSCrossRefGoogle Scholar
  40. Liouville J (1838) Note sur la théorie de la variation des constantes arbitraires. J Math Pures Appl 3:349. (Note on the theory of the variation of arbritrary constants, in French)Google Scholar
  41. Lorentz HA (1909) The theory of electrons. Teubner Verlag, LeipzigGoogle Scholar
  42. McFee JH (1966) Transmission and amplification of acoustic waves. In: Mason W (ed) Physical acoustics, vol 4A. Academic Press, New York, pp 1–44Google Scholar
  43. Mikhnenko OV, Blom PWM, Nguyen T-Q (2015) Exciton diffusion in organic semiconductors. Energy Environ Sci 8:1867CrossRefGoogle Scholar
  44. Muljarov EA, Tikhodeev SG (1997) Self-trapped excitons in semiconductor quantum wires inside a polar dielectric matrix. Phys Status Solidi A 164:393ADSCrossRefGoogle Scholar
  45. Nag BR (1980) Electron transport in compound semiconductors. Springer, BerlinCrossRefGoogle Scholar
  46. Najafi E, Scarborough TD, Tang J, Zewail A (2015) Four-dimensional imaging of carrier interface dynamics in p-n junctions. Science 347:164ADSCrossRefGoogle Scholar
  47. Peeters FM, Devreese JT (1984) Theory of polaron mobility. In: Ehrenreich H, Turnbull D (eds) Solid state physics, vol 38. Academic Press, Orlando, pp 81–133Google Scholar
  48. Pekar SI (1954) Untersuchungen über die Elektronentheorie der Kristalle. Akademie Verlag, Berlin. (Investigations on the electron theory of crystals, in German)zbMATHGoogle Scholar
  49. Pipa VI, Vagidov NZ, Mitin VV, Stroscio M (1999) Momentum relaxation of 2D electron gas due to near-surface acoustic phonon scattering. Physica B 270:280ADSCrossRefGoogle Scholar
  50. Seeger K (1973) Semiconductor physics. Springer, Wien/New YorkCrossRefGoogle Scholar
  51. Shah J (1994) Bloch oscillations in semiconductor superlattices. Proc SPIE 2145:144ADSCrossRefGoogle Scholar
  52. Simoen E, Claeys C, Czerwinski A, Katcki J (1998) Accurate extraction of the diffusion current in silicon p-n junction diodes. Appl Phys Lett 72:1054ADSCrossRefGoogle Scholar
  53. Sommerfeld A (1928) Zur Elektronentheorie der Metalle auf Grund der Fermischen Statistik. Z Phys 47:1 (On the electron theory due to Fermi’s statistics, in German)Google Scholar
  54. Stratton R (1969) Carrier heating or cooling in a strong built-in electric field. J Appl Phys 40:4582Google Scholar
  55. Tjablikov SV (1952) Zh Eksp Teor Fiz 23:381Google Scholar
  56. Toyozawa Y (1981) Charge transfer instability with structural change. I. Two-sites two-electrons system. J Phys Soc Jpn 50:1861ADSCrossRefGoogle Scholar
  57. Velasco VR, García-Moliner F (1997) Polar optical modes in semiconductor nanostructures. Surf Sci Rep 28:123ADSCrossRefGoogle Scholar
  58. Waschke C, Leisching P, Haring Bolivar P, Schwedler R, Brüggemann F, Roskos HG, Leo K, Kurz H, Köhler K (1994) Detection of Bloch oscillations in a semiconductor superlattice by time-resolved terahertz spectroscopy and degenerate four-wave mixing. Solid State Electron 37:1321ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.NaplesUSA
  2. 2.Institut für Festkörperphysik, EW5-1Technische Universität BerlinBerlinGermany

Personalised recommendations