Defects in Amorphous and Organic Semiconductors

  • Karl W. Böer
  • Udo W. PohlEmail author
Living reference work entry

Latest version View entry history



Amorphous and organic semiconductors have strong topological irregularities with respect to specific ideal structures, which depend on the particular class of such semiconductors. Most of these defects are rather gradual displacements from an ideal surrounding. The disorder leads to defects levels with a broad energy distribution which extends as band tails into the bandgap. Instead of a sharp band edge known from crystalline solids a mobility edge exists separating between extended states in the bands and localized states in the band tails.

Amorphous semiconductors, also referred to as semiconducting glasses, comprise the classes of amorphous chalcogenides and tetrahedrally bonded amorphous semiconductors. Amorphous chalcogenides are structurally floppy solids with low average coordination numbers and pronounced pinning of the Fermi level near midgap energy. The more rigid tetrahedrally bonded amorphous semiconductors have larger coordination numbers. They may be well doped p-type and n-type much like crystalline semiconductors.

Organic semiconductors comprise small-molecule crystals and polymers. Both have weak intermolecular bonds favoring deviations from ideal alignment. In small-molecule semiconductors the structure of thin films grown on substrates usually deviates from the structure of bulk crystals, with a substantially different molecule ordering at the interface and a strong dependence on the dielectric properties of the substrate. Polymers consist of long chain-like molecules packed largely uniformly in crystalline domains separated by amorphous regions with tangled polymer chains. Besides chemical structure of the chains crystallinity depends on the molecular length.


Amorphous chalcogenides Anderson localization Anderson-Mott localization Band tails Coordination number Dangling bonds Defects Doping Localization Grain boundary Mobility edge Organic semiconductors Polymers Semiconducting glasses Small-molecule crystals Point defects Tailing of states Trap states Tetrahedrally bonded amorphous semiconductors Thin-film phase 


  1. Adler D (1985) Chemistry and physics of covalent amorphous semiconductors. In: Adler D, Schwartz BB, Steele MC (eds) Physical properties of amorphous materials. Plenum Press, New York, pp 1–103CrossRefGoogle Scholar
  2. Adler D, Fritzsche H (eds) (1985) Tetrahedrally bonded amorphous semiconductors. Springer, New YorkGoogle Scholar
  3. Adler D, Yoffa EJ (1977) Localized electronic states in amorphous semiconductors. Can J Chem 55:1920CrossRefGoogle Scholar
  4. Al-Mahboob A, Sadowski JT, Fujikawa Y, Nakajima K, Sakurai T (2008) Kinetics-driven anisotropic growth of pentacene thin films. Phys Rev B 77:035426CrossRefADSGoogle Scholar
  5. Anderson PW (1958) Absence of diffusion in certain random lattices. Phys Rev 109:1492CrossRefADSGoogle Scholar
  6. Anderson PW (1975) Model for the electronic structure of amorphous semiconductors. Phys Rev Lett 34:953CrossRefADSGoogle Scholar
  7. Cohen MH, Fritzsche H, Ovshinsky SR (1969) Simple band model for amorphous semiconducting alloys. Phys Rev Lett 22:1065CrossRefADSGoogle Scholar
  8. Dinca LE, De Marchi F, MacLeod JM, Lipton-Duffin J, Gatti R, Ma D, Perepichkab DF, Rosei F (2015) Pentacene on Ni(111): room-temperature molecular packing and temperature-activated conversion to graphene. Nanoscale 7:3263CrossRefADSGoogle Scholar
  9. Djordjevic BR, Thorpe MF, Wooten F (1995) Computer model of tetrahedral amorphous diamond. Phys Rev B 52:5685CrossRefADSGoogle Scholar
  10. Drabold DA, Nakhmanson S, Zhang X (2001) Electronic structure of amorphous insulators and phoro-structural effects in chalcogenide glasses. In: Thorpe MF, Tichý L (eds) Properties and applications of amorphous materials. Kluwer, Dordrecht, pp 221–250CrossRefGoogle Scholar
  11. Evans PG, Spalenka JW (2015) Epitaxy of small organic molecules. In: Kuech TF (ed) Handbook of crystal growth of thin films and epitaxy: basic techniques, vol 3 part A, 2nd edn. Elsevier, Amsterdam, pp 509–554CrossRefGoogle Scholar
  12. Forrest SR (1997) Ultrathin organic films grown by organic molecular beam deposition and related techniques. Chem Rev 97:1793CrossRefGoogle Scholar
  13. Götze W (1981) The conductor-nonconductor transition in strongly disordered three-dimensional systems. In: Devreese JT (ed) Recent development in condensed matter physics. Plenum Press, New York, pp 133–154Google Scholar
  14. Götzen J, Käfer D, Wöll C, Witte G (2010) Growth and structure of pentacene films on graphite: weak adhesion as a key for epitaxial film growth. Phys Rev B 81:085440CrossRefADSGoogle Scholar
  15. Hamers RJ (2008) Formation and characterization of organic monolayers on semiconductor surfaces. Annu Rev Anal Chem 1:707CrossRefGoogle Scholar
  16. Hillier AC, Ward MD (1996) Epitaxial interactions between molecular overlayers and ordered substrates. Phys Rev B 54:14037CrossRefADSGoogle Scholar
  17. Hindeleh AM, Hosemann R (1991) Microparacrystals: the intermediate stage between crystalline and amorphous. J Mater Sci 26:5127CrossRefADSGoogle Scholar
  18. Hooks DE, Fritz T, Ward MD (2001) Epitaxy and molecular organization on solid substrates. Adv Mater 13:227CrossRefGoogle Scholar
  19. Hosemann R, Hindeleh AM (1995) Structure of crystalline and paracrystalline condensed matter. J Macromol Sci Phys B 34:327CrossRefGoogle Scholar
  20. Illekova E, Cunat C (1994) An extended review of structural relaxation models with the mutual correlation of their parameters. J Non Cryst Solids 172:597CrossRefADSGoogle Scholar
  21. Jarolimek K, de Groot RA, de Wijs GA, Zeman M (2009) First-principles study of hydrogenated amorphous silicon. Phys Rev B 79:155206CrossRefADSGoogle Scholar
  22. Käfer D, Ruppel L, Witte G (2007) Growth of pentacene on clean and modified gold surfaces. Phys Rev B 75:085309CrossRefADSGoogle Scholar
  23. Kalb WL, Mattenberger K, Batlogg B (2008) Oxygen-related traps in pentacene thin films: energetic position and implications for transistor performance. Phys Rev B 78:035334CrossRefADSGoogle Scholar
  24. Kalb WL, Haas S, Krellner C, Mathis T, Batlogg B (2010) Trap density of states in small-molecule organic semiconductors: a quantitative comparison of thin-film transistors with single crystals. Phys Rev B 81:155315CrossRefADSGoogle Scholar
  25. Kang JH, da Silva Filho D, Bredas J-L, Zhu X-Y (2005) Shallow trap states in pentacene thin films from molecular sliding. Appl Phys Lett 86:152115CrossRefADSGoogle Scholar
  26. Kastner M, Adler D, Fritzsche H (1976) Valence-alternation model for localized gap states in lone-pair semiconductors. Phys Rev Lett 37:1504CrossRefADSGoogle Scholar
  27. Knights JC, Biegelsen DK, Solomon I (1977) Optically induced electron spin resonance in doped amorphous silicon. Solid State Commun 22:133CrossRefADSGoogle Scholar
  28. Knipp D, Northrup JE (2009) Electric-field-induced gap states in pentacene. Adv Mater 21:2511CrossRefGoogle Scholar
  29. Koch FPV, Rivnay J, Foster S, Müller C, Downing JM, Buchaca-Domingo E, Westacott P, Yu L, Yuan M, Baklar M, Fei Z, Luscombe C, McLachlan MA, Heeney M, Rumbles G, Silva C, Salleo A, Nelson J, Smith P, Stingelin N (2013) The impact of molecular weight on microstructure and charge transport in semicrystalline polymer semiconductors–poly(3-hexylthiophene), a model study. Prog Polym Sci 38:1978CrossRefGoogle Scholar
  30. Lang DV, Chi X, Siegrist T, Sergent AM, Ramirez AP (2004) Amorphouslike density of gap states in single-crystal pentacene. Phys Rev Lett 93:086802CrossRefADSGoogle Scholar
  31. LeComber PG, Spear WE (1976) Electronic properties of doped amorphous Si and Ge. Am Inst Phys Conf Proc 31:284ADSGoogle Scholar
  32. Lee PA, Ramakrishna TV (1985) Disordered electronic systems. Rev Mod Phys 57:287CrossRefADSGoogle Scholar
  33. Lewis LJ, Mousseau N (1998) Tight-binding molecular-dynamics studies of defects and disorder in covalently bonded materials. Comput Mater Sci 12:210CrossRefGoogle Scholar
  34. Li JM, Pfeiffer G, Paesler MA, Sayers DE, Fontaine A (1989) Photon intensity-dependent darkening kinetics in optical and structural anisotropy in a-As2S3: a study of X-ray absorption spectroscopy. J Non Cryst Solids 114:52CrossRefADSGoogle Scholar
  35. Lietoila A, Wakita A, Sigmon TW, Gibbons JF (1982) Epitaxial regrowth of intrinsic, p-doped and compensated (P + B-doped) amorphous Si. J Appl Phys 53:4399CrossRefADSGoogle Scholar
  36. Lifshitz IM (1964) The energy spectrum of disordered systems. Adv Phys 13:483CrossRefADSzbMATHGoogle Scholar
  37. Maeda T, Kobayashi T, Nemoto T, Isoda S (2001) Lattice defects in organic crystals revealed by direct molecular imaging. Philos Mag B 81:1659CrossRefADSGoogle Scholar
  38. Mannsfeld SCB, Virkar A, Reese C, Toney MF, Bao Z (2009) Precise structure of pentacene monolayers on amorphous silicon oxide and relation to charge transport. Adv Mater 21:2294CrossRefGoogle Scholar
  39. Mattheus CC, Baas J, Meetsma A, de Boer JL, Kloc C, Siegrist T, Palstra TTM (2002) A 2:1 cocrystal of 6,13-dihydropentacene and pentacene. Acta Crystallogr E 58:o1229CrossRefGoogle Scholar
  40. Meyer zu Heringdorf F-J, Reuter MC, Tromp RM (2001) Growth dynamics of pentacene thin films. Nature 412:517CrossRefADSGoogle Scholar
  41. Mosley LE, Paesler MA (1984) Electronic effect on crystallization growth velocities produced by charged dangling bonds in a-Si. Appl Phys Lett 45:86CrossRefADSGoogle Scholar
  42. Mott NF (1969) Charge transport in non-crystalline semiconductors. In: Madelung O (ed) Festkörperprobleme/Advances in solid state physics, vol 9. Vieweg, Braunschweig, pp 22–45Google Scholar
  43. Mott NF, Davis EA (1979) Electronic processes in non-crystalline materials, 2nd edn. Oxford University Press, Oxford, UKGoogle Scholar
  44. Mott NF, Massey HSW (1965) The theory of atomic collisions. Claredon Press, Oxford, UKzbMATHGoogle Scholar
  45. Mousseau N, Barkema GT (2000) Activated mechanisms in amorphous silicon: an activation-relaxation-technique study. Phys Rev B 61:1898CrossRefADSGoogle Scholar
  46. Northrup JE (2015) Mobility enhancement in polymer organic semiconductors arising from increased interconnectivity at the level of polymer segments. Appl Phys Lett 106:023303CrossRefADSGoogle Scholar
  47. Northrup JE, Chabinyc ML (2003) Gap states in organic semiconductors: hydrogen- and oxygen-induced states in pentacene. Phys Rev B 68:041202CrossRefADSGoogle Scholar
  48. Ovshinsky SR (1968) Reversible electrical switching phenomena in disordered structures. Phys Rev Lett 21:1450CrossRefADSGoogle Scholar
  49. Ovshinsky SR (1976) Localized states in the gap of amorphous semiconductors. Phys Rev Lett 36:1469CrossRefADSGoogle Scholar
  50. Ovshinsky SR (1977) Chemical modification of amorphous chalcogenides. In: Proceedings of the 7th international conference on amorphous and liquid semiconductors, Edinburgh, pp 519–523Google Scholar
  51. Ovshinsky SR (1980) The chemistry of glassy materials and their relevance to energy conversion. J Non Cryst Solids 42:335CrossRefADSGoogle Scholar
  52. Pantelides ST (1986) Defects in amorphous silicon: a new perspective. Phys Rev Lett 57:2979CrossRefADSGoogle Scholar
  53. Pantelides ST (1989) The nature of defects and defect dynamics in amorphous silicon. In: Fritzsche H (ed) Amorphous silicon and related materials. World Scientific Publishing, New York, pp 541–556CrossRefGoogle Scholar
  54. Park B-N, Seo S, Evans P (2007) Channel formation in single-monolayer pentacene thin film transistors. J Phys D 40:3506CrossRefADSGoogle Scholar
  55. Pfanner G, Freysoldt C, Neugebauer J, Inam F, Drabold D, Jarolimek K, Zeman M (2013) Dangling-bond defect in a-Si:H: characterization of network and strain effects by first-principles calculation of the EPR parameters. Phys Rev B 87:125308CrossRefADSGoogle Scholar
  56. Rivnay J, Noriega R, Northrup JE, Kline RJ, Toney MF, Salleo A (2011) Structural origin of gap states in semicrystalline polymers and the implications for charge transport. Phys Rev B 83:121306CrossRefADSGoogle Scholar
  57. Sanchez ML, Aguilar MA, de Valle FJO (1997) Study of solvent effects by means of averaged solvent electrostatic potentials obtained from molecular dynamics data. J Comput Chem 18:313CrossRefGoogle Scholar
  58. Seo S, Evans PG (2009) Molecular structure of extended defects in monolayer-scale pentacene thin films. J Appl Phys 106:103521CrossRefADSGoogle Scholar
  59. Simbrunner C, Sitter H (2015) Organic van der Waals epitaxy versus templated growth by organic-organic heteroepitaxy. In: Kuech TF (ed) Handbook of crystal growth of thin films and epitaxy: basic techniques, vol 3 part A, 2nd edn. Elsevier, Amsterdam, pp 483–508CrossRefGoogle Scholar
  60. Staebler DL, Wronski CR (1977) Reversible conductivity changes in discharge-produced amorphous Si. Appl Phys Lett 31:292CrossRefADSGoogle Scholar
  61. Street RA (1991) Hydrogenated amorphous silicon. Cambridge University Press, Cambridge, UKCrossRefGoogle Scholar
  62. Street RA, Mott NF (1975) States in the gap in glassy semiconductors. Phys Rev Lett 35:1293CrossRefADSGoogle Scholar
  63. Street RA, Northrup JE, Salleo A (2005) Transport in polycrystalline polymer thin-film transistors. Phys Rev B 71:165202CrossRefADSGoogle Scholar
  64. Stuke J (1976) In: Kolomiets BT (ed) Electronic phenomena in non-crystalline solids. USSR Academy of Sciences, Leningrad, pp 193–202Google Scholar
  65. Tanaka K (1998) Medium-range structure in chalcogenide glasses. Jpn J Appl Phys 37:1747CrossRefADSGoogle Scholar
  66. Tanaka K, Nakayama S-i (1999) Band-tail characteristics in amorphous semiconductors studied by the constant-photocurrent method. Jpn J Appl Phys 38:3986CrossRefADSGoogle Scholar
  67. Thouless DJ (1974) Electrons in disordered systems and the theory of localization. Phys Rep 13:93CrossRefADSGoogle Scholar
  68. Tsetseris L, Pantelides ST (2007) Intercalation of oxygen and water molecules in pentacene crystals: first-principles calculations. Phys Rev B 75:153202CrossRefADSGoogle Scholar
  69. Varshishta P, Kalia RK, Nakano A, Li W, Ebbsjö I (1996) Molecular dynamics methods and large-scale simulations of amorphous materials. In: Thorpe MF, Mitkova MI (eds) Amorphous insulators and semiconductors. NATO ASI ser 3 high technology, vol 23. Kluwer Academic Publishers, Dordrecht, p 151Google Scholar
  70. Varshneya AK, Seeram AN, Swiler DR (1993) A review of the average coordination number concept in multicomponent chalcogenide glass systems. Phys Chem Glasses 34:179Google Scholar
  71. Verlaak S, Heremans P (2007) Molecular microelectrostatic view on electronic states near pentacene grain boundaries. Phys Rev B 75:115127CrossRefADSGoogle Scholar
  72. Virkar AA, Mannsfeld S, Bao Z, Stingelin N (2010) Organic semiconductor growth and morphology considerations for organic thin-film transistor. Adv Mater 22:3857CrossRefGoogle Scholar
  73. Wooten F, Weaire D (1989) Modelling tetrahedrally bonded random networks by computer. In: Ehrenreich H, Turnbull D (eds) Solid state physics, vol 40. Academic Press, New York, pp 1–42Google Scholar
  74. Yogev S, Matsubara R, Nakamura M, Zschieschang U, Klauk H, Rosenwaks Y (2013) Fermi level pinning by gap states in organic semiconductors. Phys Rev Lett 110:036803CrossRefADSGoogle Scholar

Copyright information

© Springer International Publishing AG 2020

Authors and Affiliations

  1. 1.NaplesUSA
  2. 2.Institut für Festkörperphysik, EW5-1Technische Universität BerlinBerlinGermany

Personalised recommendations