Crystal Bonding

  • Karl W. Böer
  • Udo W. PohlEmail author
Living reference work entry

Latest version View entry history



The bonding of atoms in semiconductors is accomplished by electrostatic forces – Coulomb forces between the electrons and atomic nuclei – and the tendency of atoms to fill their outer shells. Interatomic attraction is balanced by short-range repulsion due to strong resistance of atoms against interpenetration of core shells. Coulomb forces are the basis for ionic and hydrogen bonding forces but are also involved in metallic bonding and, as dipole–dipole interaction, in van der Waals bonding. In addition, strong quantum-mechanical effects, determining specific orbitals, and Pauli exclusion are major contributing factors in covalent and metallic bonding, respectively.


Atomic radii Buckingham potential Bond-length relaxation Bonding of atoms Coulomb force Covalent bonding Electrostatic forces Hydrogen bonding Ionic bonding Madelung constant Metallic bonding van der Waals bonding Vegard’s law 


  1. Anderson PW, Baskaran G, Zou Z, Hsu T (1987) Resonating–valence-bond theory of phase transitions and superconductivity in La2CuO4-based compounds. Phys Rev Lett 58:2790ADSCrossRefGoogle Scholar
  2. Ashcroft NW, Mermin ND (1976) Solid state physics. Holt Reinhart and Winston, New YorkzbMATHGoogle Scholar
  3. Born M (1919) Die Elektronenaffinität der Halogenatome. Verh Dtsch Phys Ges 21:679 (The electron affinity of halogen atoms, in German)Google Scholar
  4. Born M, Huang K (1954) Dynamical theory of crystal lattices. Oxford University Press, LondonzbMATHGoogle Scholar
  5. Born M, Landé A (1918) Über die Berechnung der Kompressibilität regulärer Kristalle aus der Gittertheorie. Verh Dtsch Phys Ges 20:210 (On computing the compressibility of normal crystals applying lattice theory, in German)Google Scholar
  6. Brandt NB, Moshchalkov VV (1984) Semimagnetic semiconductors. Adv Phys 33:193ADSCrossRefGoogle Scholar
  7. Brill R, Grimm HG, Hermann C, Peters CL (1939) Anwendung der röntgenographischen Fourieranalyse auf Fragen der chemischen, Bindung. Ann Physik, Lpz 34:26 (Application of x-ray Fourier analysis to problems of the chemical bond, in German)zbMATHGoogle Scholar
  8. Buckingham RA (1938) The classical equation of state of gaseous Helium, Neon and Argon. Proc R Soc Lond Ser A Math Phys Sci 168:264–283ADSGoogle Scholar
  9. Cotton FA, Wilkinson G (1972) Advanced inorganic chemistry: a comprehensive text, 3rd edn. Interscience, New YorkGoogle Scholar
  10. Coulson CA, Redei LB, Stocker D (1962) The electronic properties of tetrahedral intermetallic compounds. I. Charge distribution. Proc R Soc Lond A 270:357ADSCrossRefGoogle Scholar
  11. Dawson B (1967) A general structure factor formalism for interpreting accurate x-ray and neutron diffraction data. Proc Roy Soc Lond A 298:255ADSGoogle Scholar
  12. Ehrenreich H (1987) Electronic theory for materials science. Science 235:1029ADSCrossRefGoogle Scholar
  13. Furdyna JK (1982) Diluted magnetic semiconductors: an interface of semiconductor physics and magnetism. J Appl Phys 53:7637ADSCrossRefGoogle Scholar
  14. Furdyna JK (1986) Diluted magnetic semiconductors: issues and opportunities. J Vac Sci Technol A 4:2002ADSCrossRefGoogle Scholar
  15. Goede O, Heimbrodt W (1988) Optical Properties of (Zn, Mn) and (Cd, Mn) chalcogenide mixed crystals and superlattices. Phys Stat Sol B 146:11ADSCrossRefGoogle Scholar
  16. Goldschmidt VM (1927) Geochemische Verteilungsgesetze der Elemente, Skrifter det Norske Videnskaps. Akad (Oslo), I Math Naturwiss Kl 1926:7 (Laws for the geometrical distribution of the elements, in German)Google Scholar
  17. Gorid’ko NY, Kuzmenko PP, Novikov NN (1961) Change in mechanical properties of germanium caused by the change of concentration of current carriers. Fiz Tverd Tela 3:3650Google Scholar
  18. Haber F (1919) Theory of the heat of reaction. Verh Dtsch Phys Ges 21:750Google Scholar
  19. Harrison WA (1966) Pseudopotentials in the theory of metals. W.A. Benjamin, New YorkGoogle Scholar
  20. Harrison WA (1980) Electronic structure and the properties of solids: the physics of chemical bonds. Freeman, San FranciscoGoogle Scholar
  21. Holtzberg F, von Molnar S, Coey JMD (1980) Rare earth magnetic semiconductors. In: Moss TS, Keller SP (eds) Handbook of semiconductors, Vol. 3: materials properties and preparation. North Holland, AmsterdamGoogle Scholar
  22. Kitaigorodskii AI (1966) Stacking of molecules in a crystal, interaction potential between atoms not linked by valence bonds, and calculation of molecular movements. J Chim Phys 63:9Google Scholar
  23. Kittel C (1996) Introduction to solid state physics, 7th edn. Wiley, New YorkzbMATHGoogle Scholar
  24. Madelung E (1918) Das elektrische Feld in Systemen von regelmässig angeordneten Punktladungen. Phys Z 19:524 (The electric field of systems of regularly arranged point charges, in German)zbMATHGoogle Scholar
  25. Martin RM (1970) Elastic properties of ZnS structure semiconductors. Phys Rev B 1:4005ADSCrossRefGoogle Scholar
  26. Martins JL, Zunger A (1984) Bond lengths around isovalent impurities and in semiconductor solid solutions. Phys Rev B 30:6217ADSCrossRefGoogle Scholar
  27. Mooser E, Pearson WB (1956) The chemical bond in semiconductors. J Electron 1:629Google Scholar
  28. Pauling L (1960) The nature of the chemical bond. Cornell University Press, IthacazbMATHGoogle Scholar
  29. Phillips JC (1973) Bonds and bands in semiconductors. Academic Press, New YorkGoogle Scholar
  30. Schwoerer M, Wolf HC (2007) Organic molecular solids. Wiley-VCH, WeinheimGoogle Scholar
  31. Shanker J, Kumar M (1987) Ion-dependent and crystal-independent interionic potentials. Phys Stat Sol B 142:325ADSCrossRefGoogle Scholar
  32. Sherman J (1932) Crystal energies of ionic compounds and thermochemical applications. Chem Rev 11:93CrossRefGoogle Scholar
  33. Starr TL, Williams DE (1977) Coulombic nonbonded interatomic potential functions derived from crystal-lattice vibrational frequencies in hydrocarbons. Acta Cryst A 33:771CrossRefGoogle Scholar
  34. van der Waals JD (1873) Over de Continuiteit van den gasen vloeistof toestand. Sijthoff, Leiden (On the continuity of the gaseous and liquid state, in Dutch)Google Scholar
  35. van Vechten JA, Phillips JC (1970) New set of tetrahedral covalent radii. Phys Rev B 2:2160ADSCrossRefGoogle Scholar
  36. Vegard L (1921) Die Konstitution der Mischkristalle und die Raumfüllung der Atome. Z Phys 5:17 (The configuration of mixed crystals and space filling of atoms, in German)ADSCrossRefGoogle Scholar
  37. Villars P, Calvert LD (1985) Pearson’s handbook of crystallographic data for intermetallic phases. American Society for Metals, Metals ParkGoogle Scholar
  38. Wei S-H, Zunger A (1986) Total-energy and band-structure calculations for the semimagnetic Cd1-xMnxTe semiconductor alloy and its binary constituents. Phys Rev B 35:2340ADSCrossRefGoogle Scholar
  39. Weißmantel C, Hamann C (1979) Grundlagen der Festkörperphysik. Springer, Berlin (Fundamentals of solid state physics, in German)CrossRefGoogle Scholar
  40. Welker H, Weiss H (1954) Zur transversalen magnetischen Widerstandsänderung von InSb. Z Phys 138:322 (On the change of the transversal magnetic resistance on InSb, in German)ADSCrossRefGoogle Scholar
  41. Wigner EP, Seitz F (1933) On the constitution of metallic sodium. Phys Rev 43:804ADSCrossRefGoogle Scholar
  42. Yeh C-Y, Lu ZW, Froyen S, Zunger A (1992) Zinc-blende–wurtzite polytypism in semiconductors. Phys Rev B 46:10086ADSCrossRefGoogle Scholar
  43. Ziman JM (1969) The physics of metals, Vol. 1, electrons. Cambridge University Press, LondonGoogle Scholar
  44. Zunger A, Cohen ML (1979) First-principles nonlocal-pseudopotential approach in the density-functional formalism. II. Application to electronic and structural properties of solids. Phys Rev B 20:4082ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.NaplesUSA
  2. 2.Institut für Festkörperphysik, EW5-1Technische Universität BerlinBerlinGermany

Personalised recommendations