• Karl W. Böer
  • Udo W. PohlEmail author
Living reference work entry

Latest version View entry history



Optical band-to-band absorption can produce an electron and a hole in close proximity which attract each other via Coulomb interaction and can form a hydrogen-like bond state, the exciton. The spectrum of free Wannier–Mott excitons in bulk crystals is described by a Rydberg series with an effective Rydberg constant given by the reduced effective mass and the dielectric constant. A small dielectric constant and large effective mass yield a localized Frenkel exciton resembling an excited atomic state. Excitons increase the absorption slightly below the band edge significantly. The interaction of photons and excitons creates a mixed state, the exciton–polariton, with photon-like and exciton-like dispersion branches. An exciton can bind another exciton or carriers to form molecules or higher associates of excitons. Free charged excitons (trions) and biexcitons have a small binding energy with respect to the exciton state. The binding energy of all excitonic quasiparticles is significantly enhanced in low-dimensional semiconductors. Basic features of confined excitons with strongest transitions between electron and hole states of equal principal quantum numbers remain similar. The analysis of exciton spectra provides valuable information about the electronic structure of the semiconductor.


Band-to-band absorption Biexciton Binding energy Bound exciton Confined exciton Coulomb interaction Dielectric constant Effective mass Exciton complex Exciton spectra Excitonic quasiparticles Exciton–polariton Free exciton Frenkel exciton Indirect-gap exciton Quasi-hydrogen states Rydberg constant Rydberg series Trion Wannier-Mott exciton 


  1. Akimoto O, Hanamura E (1972) Excitonic molecule. I. Calculation of the binding energy. J Phys Soc Jpn 33:1537ADSCrossRefGoogle Scholar
  2. Akiyama H (1998) One-dimensional excitons in GaAs quantum wires. J Phys Condens Matter 10:3095ADSCrossRefGoogle Scholar
  3. Altarelli M, Bachelet G, Del Sole R (1979) Theory of exciton effects in semiconductor surface spectroscopy. J Vac Sci Technol 16:1370ADSCrossRefGoogle Scholar
  4. Astakhov GV, Kochereshko VP, Yakovlev DR, Ossau W, Nürnberger J, Faschinger W, Landwehr G, Wojtowicz T, Karczewski G, Kossut J (2002a) Optical method for the determination of carrier density in modulation-doped quantum wells. Phys Rev B 65:115310ADSCrossRefGoogle Scholar
  5. Astakhov GV, Yakovlev DR, Kochereshko VP, Ossau W, Faschinger W, Puls J, Henneberger F, Crooker SA, McCulloch Q, Wolverson D, Gippius NA, Waag A (2002b) Binding energy of charged excitons in ZnSe-based quantum wells. Phys Rev B 65:165335ADSCrossRefGoogle Scholar
  6. Bajaj KK, Reynolds DC (1987) An overview of optical characterization of semiconductor structures and alloys. Proc SPIE 0794:2ADSCrossRefGoogle Scholar
  7. Baldereschi A, Lipari NO (1973) Spherical model of shallow acceptor states in semiconductors. Phys Rev B 8:2697ADSCrossRefGoogle Scholar
  8. Bar-Joseph I (2005) Trions in GaAs quantum wells. Semicond Sci Technol 20:R29ADSCrossRefGoogle Scholar
  9. Bassani F, Pastori-Parravicini G (1975) Electronic states and optical transitions in solids. Pergamon Press, OxfordGoogle Scholar
  10. Beinikhes IL, Kogan ShM (1985) Influence of valence band degeneracy on the fundamental optical absorption in direct-gap semiconductors in the region of exciton effects. Sov Phys JETP 62:415Google Scholar
  11. Birkedal D, Singh J, Lyssenko VG, Erland J, Hvam JM (1996) Binding of quasi-two-dimensional biexcitons. Phys Rev Lett 76:672ADSCrossRefGoogle Scholar
  12. Brinkman WF, Rice TM, Bell B (1973) The excitonic molecule. Phys Rev B 8:1570ADSCrossRefGoogle Scholar
  13. Broser I, Broser R, Beckmann E, Birkicht E (1981) Thin prism refraction: a new direct method of polariton spectroscopy. Solid State Commun 39:1209ADSCrossRefGoogle Scholar
  14. Cavenett BC (1980) Optical detection of exciton resonances in semiconductors. J Phys Soc Jpn 49(Suppl A):611Google Scholar
  15. Cavenett BC (1984) Triplet exciton recombination in amorphous and crystalline semiconductors. J Lumin 31/32:369CrossRefGoogle Scholar
  16. Cho K (1979) Internal structure of excitons. In: Cho K (ed) Excitons. Springer, Berlin, p 15CrossRefGoogle Scholar
  17. Collins RT, Vina L, Wang WI, Mailhiot C, Smith DL (1987) Electronic properties of quantum wells in perturbing fields. Proc SPIE 0792:2ADSCrossRefGoogle Scholar
  18. Compaan A (1975) Surface damage effects on allowed and forbidden phonon Raman scattering in cuprous oxide. Solid State Commun 16:293ADSCrossRefGoogle Scholar
  19. Davies JJ, Cox RT, Nicholls JE (1984) Optically detected magnetic resonance of the triplet state of copper-center – donor pairs in CdS. Phys Rev B 30:4516ADSCrossRefGoogle Scholar
  20. Davydov VYu, Subashiev AV, Cheng TS, Foxon CT, Goncharuk IN, Smirnov AN, Zolotareva RV, Lundin WV (1997) Surface polariton Raman spectroscopy in cubic GaN epitaxial layers. Mater Sci Forum 264:1371Google Scholar
  21. Dean PJ, Thomas DG (1966) Intrinsic absorption-edge spectrum of gallium phosphide. Phys Rev 150:690ADSCrossRefGoogle Scholar
  22. Denisov MM, Makarov VP (1973) Longitudinal and transverse excitons in semiconductors. Phys Status Solidi B 56:9ADSCrossRefGoogle Scholar
  23. Denisov VN, Mavrin BN, Podobedov VB (1987) Hyper-Raman scattering by vibrational excitations in crystals, glasses and liquids. Phys Rep 151:1ADSCrossRefGoogle Scholar
  24. Dingle R, Wiegmann W, Henry CH (1974) Quantum states of confined carriers in very thin AlxGa1-xAs-GaAs-AlxGa1-xAs heterostructures. Phys Rev Lett 33:827ADSCrossRefGoogle Scholar
  25. Elliott RJ (1961) Symmetry of excitons in Cu2O. Phys Rev 124:340ADSCrossRefGoogle Scholar
  26. Esser A, Zimmermann R, Runge E (2001) Theory of trion spectra in semiconductor nanostructures. Phys Status Solidi B 227:317ADSCrossRefGoogle Scholar
  27. Filinov AV, Riva C, Peeters FM, Lozovik YuE, Bonitz M (2005) Influence of well-width fluctuations on the binding energy of excitons, charged excitons, and biexcitons in GaAs-based quantum wells. Phys Rev B 70:035323Google Scholar
  28. Fischer B, Lagois J (1979) Surface exciton polaritons. In: Cho K (ed) Excitons. Springer, Berlin, p 183CrossRefGoogle Scholar
  29. Flohrer J, Jahne E, Porsch M (1979) Energy levels of A and B excitons in wurtzite-type semiconductors with account of electron-hole exchange interaction effects. Phys Status Solidi B 91:467ADSCrossRefGoogle Scholar
  30. Frenkel JI (1931) On the transformation of light into heat in solids II. Phys Rev 37:1276ADSzbMATHCrossRefGoogle Scholar
  31. Fröhlich H (1954) Electrons in lattice fields. Adv Phys 3:325ADSzbMATHCrossRefGoogle Scholar
  32. Fröhlich D (1981) Aspects of nonlinear spectroscopy. In: Treusch J (ed) Festkörperprobleme. Advances in solid state physics, vol 21. Vieweg, Braunschweig, p 363Google Scholar
  33. García-Cristóbal A, Cantarero A, Trallero-Giner C, Cardona M (1998) Resonant hyper-Raman scattering in semiconductors. Phys Rev B 58:10443ADSCrossRefGoogle Scholar
  34. George GA, Morris GC (1970) The absorption, fluorescence and phosphorescence of single crystals of 1,2,4,5-tetrachlorobenzene and 1,4-dichlorobenzene at low temperatures. Mol Cryst Liq Cryst 11:61CrossRefGoogle Scholar
  35. Gerlach B (1974) Bound states in electron-exciton collisions. Phys Status Solidi B 63:459ADSCrossRefGoogle Scholar
  36. Giblin J, Vietmeyer F, McDonald MP, Kuno M (2011) Single nanowire extinction spectroscopy. Nano Lett 11:3307ADSCrossRefGoogle Scholar
  37. Girlanda R, Savasta S, Quattropani A (1994) Theory of exciton-polaritons in semiconductors with nearly degenerate exciton levels. Solid State Commun 90:267ADSCrossRefGoogle Scholar
  38. Gislason HP, Monemar B, Dean PJ, Herbert DC, Depinna S, Cavenett BC, Killoran N (1982) Photoluminescence studies of the 1.911-eV Cu-related complex in GaP. Phys Rev B 26:827ADSCrossRefGoogle Scholar
  39. Gourley PL, Wolfe JP (1978) Spatial condensation of strain-confined excitons and excitonic molecules into an electron-hole liquid in silicon. Phys Rev Lett 40:526. And: Properties of the electron-hole liquid in Si: zero stress to the high-stress limit. Phys Rev B 24:5970 (1981)ADSCrossRefGoogle Scholar
  40. Grosmann M (1963) The effect of perturbations on the excitonic spectrum of cuprous oxide. In: Kuper CG, Whitfield GD (eds) Polarons and excitons. Oliver and Boyd, London, p 373Google Scholar
  41. Grundmann M, Bimberg D (1988) Anisotropy effects on excitonic properties in realistic quantum wells. Phys Rev B 38:13486ADSCrossRefGoogle Scholar
  42. Haken H (1963) Theory of excitons II. In: Kuper CG, Whitfield GD (eds) Polarons and excitons. Oliver and Boyd, Edinburgh, p 295Google Scholar
  43. Haken H (1976) Quantum field theory of solids. North Holland Publishing, AmsterdamGoogle Scholar
  44. Haken H, Nikitine S (eds) (1975) Excitons at high densities. Springer tracts in modern physics. Springer, New YorkGoogle Scholar
  45. Hanamura E (1976) Excitonic molecules. In: Seraphin BO (ed) Optical properties of solids. North Holland Publishing, Amsterdam, pp 81–142Google Scholar
  46. Hanamura E, Haug H (1977) Condensation effects of excitons. Phys Rep 33:209ADSCrossRefGoogle Scholar
  47. Hönerlage B, Lévy R, Grun JB, Klingshirn C, Bohnert K (1985) The dispersion of excitons, polaritons and biexcitons in direct-gap semiconductors. Phys Rep 124:161ADSCrossRefGoogle Scholar
  48. Hopfield JJ, Thomas DG (1963) Theoretical and experimental effects of spatial dispersion on the optical properties of crystals. Phys Rev 132:563ADSCrossRefGoogle Scholar
  49. Kabler MN (1964) Low-temperature recombination luminescence in alkali halide crystals. Phys Rev 136:A1296ADSCrossRefGoogle Scholar
  50. Kamtekar KT, Monkman AP, Bryce MR (2010) Recent advances in white organic light-emitting materials and devices (WOLEDs). Adv Mater 22:572CrossRefGoogle Scholar
  51. Kato Y, Yu CI, Goto T (1970) The effect of exchange interaction on the exciton bands in CuCl-CuBr solid solutions. J Phys Soc Jpn 28:104ADSCrossRefGoogle Scholar
  52. Kazimierczuk T, Fröhlich D, Scheel S, Stolz H, Bayer M (2014) Giant Rydberg excitons in the copper oxide Cu2O. Nature 514:343ADSCrossRefGoogle Scholar
  53. Kittel C (1963) Quantum theory of solids. Wiley, New York, p 131Google Scholar
  54. Kittel C (1966) Introduction to solid state physics. Wiley, New YorkzbMATHGoogle Scholar
  55. Knox RS (1984) Introduction to exciton physics. In: DiBartolo B, Danko J (eds) Collective excitations in solids. Plenum Press, New York, p 183Google Scholar
  56. Koteles ES, Jagannath C, Lee J, Vassell MO (1987) Uniaxial stress as a probe of valence subband mixing in semiconductor quantum wells. Proc SPIE 0792:168ADSCrossRefGoogle Scholar
  57. Kudlek G, Presser N, Pohl UW, Gutowski J, Lilja J, Kuusisto E, Imai K, Pessa M, Hingerl K, Sitter A (1992) Exciton complexes in ZnSe layers: a tool for probing the strain distribution. J Cryst Growth 117:309ADSCrossRefGoogle Scholar
  58. Kulakovskii VD, Lysenko VG, Timofeev VB (1985) Excitonic molecules in semiconductors. Sov Phys Usp 28:735ADSCrossRefGoogle Scholar
  59. Lambrecht WRL, Rodina AV, Limpijumnong S, Segall B, Meyer BK (2002) Valence-band ordering and magneto-optic exciton fine structure in ZnO. Phys Rev B 65:075207ADSCrossRefGoogle Scholar
  60. Lampert MA (1958) Mobile and immobile effective-mass-particle complexes in nonmetallic solids. Phys Rev Lett 1:450ADSCrossRefGoogle Scholar
  61. Landau LD (1933) Electron motion in crystal lattices. Phys Z Sowjetunion 3:664Google Scholar
  62. Loudon R (1963) Theory of first-order Raman effect in crystals. Proc R Soc Lond A275:218ADSGoogle Scholar
  63. MacFarlane GG, McLean TP, Quarrington JE, Roberts V (1957) Fine structure in the absorption-edge spectrum of Ge. Phys Rev 108:1377ADSCrossRefGoogle Scholar
  64. Mahan GD, Hopfield JJ (1964) Piezoelectric polaron effects in CdS. Phys Rev Lett 12:241ADSCrossRefGoogle Scholar
  65. McLean TP (1963) Excitons in germanium. In: Kuper CG, Whitfield GD (eds) Polarons and excitons. Oliver and Boyd, London, p 367Google Scholar
  66. Miller RC, Kleinman DA (1985) Excitons in GaAs quantum wells. J Lumin 30:520CrossRefGoogle Scholar
  67. Miller DAB, Chemla DS, Damen TC, Gossard AC, Wiegmann W, Wood TH, Burrus CA (1985) Electric field dependence of optical absorption near the band gap of quantum-well structures. Phys Rev B 32:1043ADSCrossRefGoogle Scholar
  68. Moskalenko SA (1958) The theory of Mott exciton in alkali-halide crystals. Zh Opt Spektrosk (USSR) 5:147ADSGoogle Scholar
  69. Mott NF (1938) Conduction in polar crystals. II. The conduction band and ultra-violet absorption of alkali-halide crystals. Trans Faraday Soc 34:500CrossRefGoogle Scholar
  70. Muljarov EA, Zhukov EA, Dneprovskii VS, Masumoto Y (2000) Dielectrically enhanced excitons in semiconductor-insulator quantum wires: theory and experiment. Phys Rev B 62:7420ADSCrossRefGoogle Scholar
  71. Ogawa T, Takagahara T (1991) Optical absorption and Sommerfeld factors of one-dimensional semiconductors: an exact treatment of excitonic effects. Phys Rev B 44:8138ADSCrossRefGoogle Scholar
  72. Phillips RT, Lovering DJ, Denton GJ, Smith GW (1992) Biexciton creation and recombination in a GaAs quantum well. Phys Rev B 45:4308ADSCrossRefGoogle Scholar
  73. Ploog K, Döhler GH (1983) Compositional and doping superlattices in III-V semiconductors. Adv Phys 32:285ADSCrossRefGoogle Scholar
  74. Pohl UW (2008) InAs/GaAs quantum dots with multimodal size distribution. In: Wang ZM (ed) Self-assembled quantum dots. Springer, New York, p 43CrossRefGoogle Scholar
  75. Pope M, Swenberg CE (1982) Electronic processes in organic crystals. Oxford University Press, Oxford, UKGoogle Scholar
  76. Reynolds DC, Collins TC (1981) Excitons: their properties and uses. Academic Press, New YorkGoogle Scholar
  77. Rodina AV, Dietrich M, Göldner A, Eckey L, Hoffmann A, Efros AL, Rosen M, Meyer BK (2001) Free excitons in wurtzite GaN. Phys Rev B 64:115204ADSCrossRefGoogle Scholar
  78. Rodt S, Schliwa A, Pötschke K, Guffarth F, Bimberg D (2005) Correlation of structural and few-particle properties of self-organized InAs∕GaAs quantum dots. Phys Rev B 71:155325ADSCrossRefGoogle Scholar
  79. Rössler U (1979) Fine structure, lineshape, and dispersion of Wannier excitons. In: Treusch J (ed) Festkörperprobleme. Advances in solid state physics, vol 19. Vieweg, Braunschweig, p 77Google Scholar
  80. Rudin S, Reinecke TL, Segall B (1990) Temperature-dependent exciton linewidths in semiconductors. Phys Rev B 42:11218ADSCrossRefGoogle Scholar
  81. Scarani V, Bechmann-Pasquinucci H, Cerf NJ, Dušek M, Lütkenhaus N, Peev M (2009) The security of practical quantum key distribution. Rev Mod Phys 81:1301ADSCrossRefGoogle Scholar
  82. Seguin R, Schliwa A, Rodt S, Pötschke K, Pohl UW, Bimberg D (2005) Size-dependent exciton fine-structure splitting in self-organized InAs/GaAs quantum dots. Phys Rev Lett 95:257402ADSCrossRefGoogle Scholar
  83. Shields AJ (2007) Semiconductor quantum light sources. Nat Photonics 1:215ADSCrossRefGoogle Scholar
  84. Shields AJ, Pepper M, Ritchie DA, Simmons MY (1995a) Influence of excess electrons and magnetic fields on Mott-Wannier excitons in GaAs quantum wells. Adv Phys 44:47ADSCrossRefGoogle Scholar
  85. Shields AJ, Osborne JL, Simmons MY, Pepper M, Ritchie DA (1995b) Magneto-optical spectroscopy of positively charged excitons in GaAs quantum wells. Phys Rev B 52:R5523ADSCrossRefGoogle Scholar
  86. Shinada M, Sugano S (1966) Interband optical transitions in extremely anisotropic semiconductors. I. Bound and unbound exciton absorption. J Phys Soc Jpn 21:1936ADSCrossRefGoogle Scholar
  87. Shinar J (ed) (2004) Organic light-emitting devices: a survey. Springer, New YorkGoogle Scholar
  88. Singh J (1984) The dynamics of excitons. In: Ehrenreich H, Turnbull D (eds) Solid state physics, vol 38. Academic Press, Orlando/New York, p 295Google Scholar
  89. Singh J, Birkedal D, Lyssenko VG, Hvam JM (1996) Binding energy of two-dimensional biexcitons. Phys Rev B 53:15909ADSCrossRefGoogle Scholar
  90. Solovyev VV, Kukushkin IV (2009) Measurement of binding energy of negatively charged excitons in GaAs/Al0.3Ga0.7As quantum wells. Phys Rev B 79:233306ADSCrossRefGoogle Scholar
  91. Someya T, Akiyama H, Sakaki H (1996) Enhanced binding energy of one-dimensional excitons in quantum wires. Phys Rev Lett 76:2965ADSCrossRefGoogle Scholar
  92. Song KS, Williams RT (1993) Self-trapped excitons. Springer series in solid-state sciences, vol 105. Springer, BerlinGoogle Scholar
  93. Stébé B, Ainane A (1989) Ground state energy and optical absorption of excitonic trions in two dimensional semiconductors. Superlattice Microstruct 5:545ADSCrossRefGoogle Scholar
  94. Tamor MA, Wolfe JP (1980) Drift and diffusion of free excitons in Si. Phys Rev Lett 44:1703ADSCrossRefGoogle Scholar
  95. Thewalt MLW, Rostworowski JA (1978) Biexcitons in Si. Solid State Commun 25:991ADSCrossRefGoogle Scholar
  96. Thomas GA, Rice TM (1977) Trions, molecules and excitons above the Mott density in Ge. Solid State Commun 23:359ADSCrossRefGoogle Scholar
  97. Thomas GA, Timofeev VB (1980) A review of N = 1 to ∞ particle complexes in semiconductors. In: Moss TS, Balkanski M (eds) Handbook on semiconductors, vol 2. North Holland Publishing, Amsterdam, p 45Google Scholar
  98. Tomiki T (1969) Optical constants and exciton states in KCl single crystals III. The spectra of conductivity and of energy loss. J Phys Soc Jpn 26:738ADSCrossRefGoogle Scholar
  99. Toyozawa Y (1980) Electrons, holes, and excitons in deformable lattice. In: Kubo R, Hanamura I (eds) Excitons. Springer, BerlinGoogle Scholar
  100. Türck V, Rodt S, Stier O, Heitz R, Engelhardt R, Pohl UW, Bimberg D, Steingrüber R (2000) Effect of random field fluctuations on excitonic transitions of individual CdSe quantum dots. Phys Rev B 61:9944ADSCrossRefGoogle Scholar
  101. Ueta M, Nishina Y (eds) (1976) Physics of highly excited states in solids. Lecture notes in physics, vol 57. Springer, New YorkGoogle Scholar
  102. Uihlein C, Fröhlich D, Kenklies R (1981) Investigation of exciton fine structure in Cu2O. Phys Rev B 23:2731ADSCrossRefGoogle Scholar
  103. Vogl P (1976) Microscopic theory of electron-phonon interaction in insulators or semiconductors. Phys Rev B 13:694ADSCrossRefGoogle Scholar
  104. Vouilloz F, Oberli DY, Dupertuis M-A, Gustafsson A, Reinhardt F, Kapon E (1997) Polarization anisotropy and valence band mixing in semiconductor quantum wires. Phys Rev Lett 78:1580ADSCrossRefGoogle Scholar
  105. Vouilloz F, Oberli DY, Dupertuis M-A, Gustafsson A, Reinhardt F, Kapon E (1998) Effect of lateral confinement on valence-band mixing and polarization anisotropy in quantum wires. Phys Rev B 57:12378ADSCrossRefGoogle Scholar
  106. Wang X-L, Voliotis V (2006) Epitaxial growth and optical properties of semiconductor quantum wires. J Appl Phys 99:121301ADSCrossRefGoogle Scholar
  107. Wannier GH (1937) The structure of electronic excitation levels in insulating crystals. Phys Rev 52:191ADSzbMATHCrossRefGoogle Scholar
  108. Washington MA, Genack AZ, Cummins HZ, Bruce RH, Compaan A, Forman RA (1977) Spectroscopy of excited yellow exciton states in Cu2O by forbidden resonant Raman scattering. Phys Rev B 15:2145ADSCrossRefGoogle Scholar
  109. Weisbuch C, Benisty H, Houdré R (2000) Overview of fundamentals and applications of electrons, excitons and photons in confined structures. J Lumin 85:271CrossRefGoogle Scholar
  110. Wicksted J, Matsushita M, Cummins HZ, Shigenari T, Lu XZ (1984) Resonant Brillouin scattering in CdS. I. Experiment. Phys Rev B 29:3350ADSCrossRefGoogle Scholar
  111. Yamada Y, Sakashita T, Watanabe H, Kugimiya H, Nakamura S, Taguchi T (2000) Optical properties of biexcitons in ZnS. Phys Rev B 61:8363ADSCrossRefGoogle Scholar
  112. Yu PY (1979) Study of excitons and exciton-phonon interactions by resonant Raman and Brillouin spectroscopies. In: Cho K (ed) Excitons. Springer, Berlin, p 211CrossRefGoogle Scholar
  113. Yu PW, Reynolds DC, Bajaj KK, Litton CW, Klem J, Huang D, Morkoc H (1987) Observation of monolayer fluctuations in the excited states of GaAs-AlxGa1−xAs multiple-quantum-well. Solid State Commun 62:41ADSCrossRefGoogle Scholar
  114. Zieliński M, Gołasa K, Molas MR, Goryca M, Kazimierczuk T, Smoleński T, Golnik A, Kossacki P, Nicolet AAL, Potemski M, Wasilewski ZR, Babiński A (2015) Excitonic complexes in natural InAs/GaAs quantum dots. Phys Rev B 91:085303ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.NaplesUSA
  2. 2.Institut für Festkörperphysik, EW5-1Technische Universität BerlinBerlinGermany

Personalised recommendations