Advertisement

Photon–Free-Electron Interaction

  • Karl W. Böer
  • Udo W. PohlEmail author
Living reference work entry

Latest version View entry history

  • 6 Downloads

Abstract

The interaction of photons with free electrons or holes in the respective bands strongly influences optical absorption and reflection in the spectral region between the absorption edge and the Reststrahlen wavelength. In a driving external field, the ensemble of free electrons (or, at higher frequency, of valence-electrons) oscillates with respect to the ion cores on the whole, leading to a plasma resonance absorption. The plasmon dispersion has two branches with frequencies depending on the carrier density. Nonresonant carrier absorption occurs away from the resonance, with a free-electron contribution predominantly from indirect transitions within the conduction band, and prevalent direct transitions for holes. The spectra and underlying dispersion relations provide valuable information about the effective masses of electrons and holes, carrier concentrations, and carrier-relaxation times.

Keywords

Cyclotron-resonance absorption Electron-plasma absorption Faraday effect Free-carrier absorption Free-electron dispersion Magnetoplasma reflection Photon-free-electron interaction Plasma frequency Plasmon Plasmon dispersion Valence-electron plasma absorption 

References

  1. Basu PK (1997) Theory of optical processes in semiconductors. Oxford University Press, New YorkGoogle Scholar
  2. Cavenett BC, Pakulis EJ (1985) Optically detected cyclotron resonance in a GaAs/Ga0.67Al0.33As superlattice. Phys Rev B 32:8449ADSCrossRefGoogle Scholar
  3. Chaplik AV (1972) Possible crystallization of charge carriers in low-density inversion layers. Sov Phys - JETP 35:395ADSGoogle Scholar
  4. Das Sarma S, Quinn JJ (1982) Collective excitations in semiconductor superlattices. Phys Rev B 25:7603ADSCrossRefGoogle Scholar
  5. Dixon JR (1960) Proceedings of 5th international conference physics semicond, Prague, p 366Google Scholar
  6. Drude P (1900) Zur Elektronentheorie der Metalle. Ann Phys (Leipzig) 1:566, and 3: 369 (On the electron theory of metals, in German)ADSCrossRefGoogle Scholar
  7. Egerton RF (2009) Electron energy-loss spectroscopy in the TEM. Rep Prog Phys 72:016502ADSCrossRefGoogle Scholar
  8. Fan HY (1967) Effects of free carriers on the optical properties. In: Willardson RK, Beer AC (eds) Semiconductors and semimetals, vol 3. Academic Press, New York, p 405Google Scholar
  9. Fasol G, Mestres N, Hughes HP, Fischer A, Ploog K (1986) Raman scattering by coupled-layer plasmons and in-plane two-dimensional single-particle excitations in multi-quantum-well structures. Phys Rev Lett 56:2517ADSCrossRefGoogle Scholar
  10. Giuliani GF, Quinn JJ (1983) Charge-density excitations at the surface of a semiconductor superlattice: a new type of surface polariton. Phys Rev Lett 51:919ADSCrossRefGoogle Scholar
  11. Grimes CC, Adams G (1976) Observation of two-dimensional plasmons and electron-ripplon scattering in a sheet of electrons on liquid helium. Phys Rev Lett 36:145ADSCrossRefGoogle Scholar
  12. Harper PG, Hodby JW, Stradling RA (1973) Electrons and optic phonons in solids-the effects of longitudinal optical lattice vibrations on the electronic excitations of solids. Rep Prog Phys 36:1ADSCrossRefGoogle Scholar
  13. Huberman M, Overhauser AW (1982) Open-orbit magnetoresistance spectra of potassium. Phys Rev B 25:2211ADSCrossRefGoogle Scholar
  14. Jain JK, Allen PB (1985) Plasmons in layered films. Phys Rev Lett 54:1985Google Scholar
  15. Kaiser W, Collins RJ, Fan HY (1953) Infrared absorption in p-type germanium. Phys Rev 91:1380ADSCrossRefGoogle Scholar
  16. Kim OK, Bonner WA (1983) Infrared reflectance and absorption of n-type InP. J Electron Mater 12:827ADSCrossRefGoogle Scholar
  17. Kong X, Albert S, Bengoechea-Encabo A, Sanchez-Garcia MA, Calleja E, Trampert A (2012) Plasmon excitation in electron energy-loss spectroscopy for determination of indium concentration in (In, Ga)N/GaN nanowires. Nanotechnology 23:48CrossRefGoogle Scholar
  18. Lax B (1963) Proceedings of international school physics “Enrico Fermi”, Course XXII (Smith RA ed), p 240. Academic Press, New YorkGoogle Scholar
  19. Maan JC (1993) Intra- and interband magneto-optical properties of bulk semiconductors and heterostructures. In: Martinez G (ed) Optical properties of semiconductors. Springer Netherlands, DordrechtGoogle Scholar
  20. Madelung O (1978) Introduction to solid state theory. Springer, Berlin/New YorkCrossRefGoogle Scholar
  21. Mooradian A, McWhorter AL (1967) Polarization and intensity of Raman scattering from plasmons and phonons in gallium arsenide. Phys Rev Lett 19:849ADSCrossRefGoogle Scholar
  22. Mooradian A, Wright GB (1966) Observation of the interaction of plasmons with longitudinal optical phonons in GaAs. Phys Rev Lett 16:999ADSCrossRefGoogle Scholar
  23. Oleg D, Pinczuk A, Gossard AC, Wiegmann W (1982) Plasma dispersion in a layered electron gas: a determination in GaAs-(AlGa)As heterostructures. Phys Rev B 25:7867ADSCrossRefGoogle Scholar
  24. Overhauser AW (1978) Charge-density waves and isotropic metals. Adv Phys 27:343ADSCrossRefGoogle Scholar
  25. Palik ED, Furdyna JK (1970) Infrared and microwave magnetoplasma effects in semiconductors. Rep Prog Phys 33:1193ADSCrossRefGoogle Scholar
  26. Palik ED, Holm RT (1979) Optical characterization of semiconductors. In: Zemel JN (ed) Nondestructive evaluation of semiconductor materials and devices. Plenum Press, New York, pp 315–345CrossRefGoogle Scholar
  27. Palik ED, Wright GB (1967) Free-carrier magnetooptical effects. In: Willardson RK, Beer AC (eds) Semiconductors and semimetals, vol 3. Academic Press, New York, p 421Google Scholar
  28. Palik ED, Teitler S, Henvis BW, Wallis RF (1962) Magneto-optical studies of semiconductors using polarized radiation. In: Stickland AC (ed) Proceedings of 6th international conference physics semicond, Exeter, pp 288–294Google Scholar
  29. Patel CKN, Slusher RE (1968) Raman scattering by polaritons in presence of electron plasma in GaAs. Phys Rev Lett 22:282ADSCrossRefGoogle Scholar
  30. Pidgeon CR (1962) PhD thesis, University ReadingGoogle Scholar
  31. Pinczuk A, Lamont MG, Gossard AC (1986) Discrete plasmons in finite semiconductors multilayers. Phys Rev Lett 56:2092ADSCrossRefGoogle Scholar
  32. Pines D (1999) Elementary excitations in solids. Perseus Books, ReadingzbMATHGoogle Scholar
  33. Platzman PM, Wolff PA (1973) Waves and interactions in solid state plasmas. In: Ehrenreich H, Seitz F, Turnbull D (eds). Solid state physics, vol Supplement 13, Academic Press, New YorkGoogle Scholar
  34. Poole CP Jr (1998) The physics handbook. Wiley, New YorkzbMATHGoogle Scholar
  35. Roth LM (1982) Dynamics of electrons in electric and magnetic fields. In: Moss TS, Paul W (eds) Handbook of semiconductors, vol 1. North Holland Publishing, Amsterdam, pp 451–485Google Scholar
  36. Sakurai JJ, Napolitano J (2011) Modern quantum mechanics, 2nd edn. Addison-Wesley, BostonzbMATHGoogle Scholar
  37. Seeger K (1973) Semiconductor physics. Springer, New YorkCrossRefGoogle Scholar
  38. Seeger K (2004) Semiconductor physics, 9th edn. Springer, New YorkCrossRefGoogle Scholar
  39. Stern F (1967) Polarizability of a two-dimensional electron gas. Phys Rev Lett 18:546ADSCrossRefGoogle Scholar
  40. Sugano S, Kojima N (eds) (2000) Magneto-optics. Springer, BerlinGoogle Scholar
  41. Tiginyanu IM, Irmer G, Monecke J, Vogt A, Hartnagel HL (1997) Porosity-induced modification of the phonon spectrum of n-GaAs. Semicond Sci Technol 12:491ADSCrossRefGoogle Scholar
  42. Wilson JA, DiSalvo FJ, Mahajan S (1975) Charge-density waves and superlattices in the metallic layered transition metal dichalcogenides. Adv Phys 24:17Google Scholar
  43. Wolfe R (1954) On the theory of optical absorption in metals and semiconductors. Proc Phys Soc London Sect A 67:74ADSCrossRefGoogle Scholar
  44. Wright GB, Lax B (1961) Magnetoreflection experiments in intermetallics. J Appl Phys 32:2113ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.NaplesUSA
  2. 2.Institut für Festkörperphysik, EW5-1Technische Universität BerlinBerlinGermany

Personalised recommendations