Photon–Phonon Interaction

  • Karl W. Böer
  • Udo W. PohlEmail author
Living reference work entry

Later version available View entry history



The interaction of photons with solids comprises ionic and electronic oscillations; this chapter focuses on lattice vibrations. The dielectric polarization is related to the atomic polarizability. The dynamic response of the dielectric function on electromagnetic radiation can be described classically by elementary oscillators, yielding strong interaction of photons and TO phonons with a resulting large Reststrahl absorption in the IR range. The dispersion is described by a phonon-polariton, which is observed in inelastic scattering processes. Brillouin scattering at acoustic phonons and Raman scattering at optical phonons provide direct information about the spectrum and symmetry of vibrations in a semiconductor.


Brillouin scattering Dielectric Function Elastic and Inelastic scattering Kramers-Kronig Relations Lattice Polarization Phonon dispersion Phonon-Polariton Photon-Phonon Interaction Raman Scattering Reststrahl Absorption 


  1. Abstreiter G (1986) Light scattering in novel layered semiconductor structures. In: Grosse P (ed) Festkörperprobleme/Adv Solid State Phys 26:41Google Scholar
  2. Abstreiter G, Merlin R, Pinczuk A (1986) Inelastic light scattering by electronic excitations in semiconductor heterostructures. IEEE J Quantum Electron 22:1771ADSCrossRefGoogle Scholar
  3. Balkanski M (ed) (1980) Handbook of semiconductors, vol 2. North-Holland, AmsterdamGoogle Scholar
  4. Balkanski M, Lallemand P (1973) Photonics. Gauthiers-Villard, ParisGoogle Scholar
  5. Barker AS Jr, Sievers AJ (1975) Optical studies of the vibrational properties of disordered solids. Rev Mod Phys 47(Suppl 2):S1CrossRefGoogle Scholar
  6. Birman JL (1974) Infra-Red and Raman Optical Processes of Insulating Crystals; Infra-Red and Raman Optical Processes of Insulating Crystals. Vol. 25/2b, Springer, Berlin HeidelbergGoogle Scholar
  7. Born M, Huang K (1954) Dynamical theory of crystal lattices. Oxford University Press, LondonzbMATHGoogle Scholar
  8. Brillouin L (1922) Diffusion de la lumiere et des rayonnes X par un corps transparent homogene; influence de l’agitation thermique. Ann Phys (Leipzig) 17:88 (Diffusion of light and X-rays through transparent homogeneous bulk; influence of thermic motion, in French)ADSCrossRefGoogle Scholar
  9. Broser I, Rosenzweig M (1980) Magneto-Brillouin scattering of polaritons in CdS. Solid State Commun 36:1027ADSCrossRefGoogle Scholar
  10. Burstein E, Chen CY, Lundquist S (1979) Light scattering in solids. In: Birman J, Cummins HZ, Rebane KK (eds) 2nd joint USA-USSR symposium on light scattering in condensed matter. Plenum Press, New York, p 479Google Scholar
  11. Callen HB (1949) Electric breakdown in ionic crystals. Phys Rev 76:1394ADSCrossRefGoogle Scholar
  12. Cardona M (1969) Optical constants of insulators: dispersion relations. In: Nudelman S, Mitra MM (eds) Optical properties of solids. Plenum Press, New York, pp 137–151Google Scholar
  13. Carles RN, Saint-Cricq N, Renucci MA, Bennucci BJ (1978) In: Balkanski M (ed) Lattice dynamics. Flammarion, Paris, p 195Google Scholar
  14. Chang IF, Mitra SS (1968) Application of a modified random-element-isodisplacement model to long-wavelength optic phonons of mixed crystals. Phys Rev 172:924ADSCrossRefGoogle Scholar
  15. Chang IF, Mitra SS (1971) Long wavelength optical phonons in mixed crystals. Adv Phys 20:359ADSCrossRefGoogle Scholar
  16. Charfi F, Zuoaghi M, Llinares C, Balkanski M, Hirlimann C, Joullie A (1977) Small wave vector modes in Al1-xGaxSb. In: Balkanski M (ed) Lattice dynamics. Flammarion, Paris, p 438Google Scholar
  17. Chiao RY, Townes CH, Stiocheff BP (1964) Stimulated Brillouin scattering and coherent generation of intense hypersonic waves. Phys Rev Lett 12:592ADSCrossRefGoogle Scholar
  18. Cochran W (1973) The dynamics of atoms in crystals. Edward Arnold, LondonGoogle Scholar
  19. Conwell EM (1967) High-field transport in semiconductors. Academic Press, New YorkGoogle Scholar
  20. Fasolino A, Molinari E (1990) Calculations of phonon spectra in III-V and Si-Ge superlattices: a tool for structural characterization. Surf Sci 228:112ADSCrossRefGoogle Scholar
  21. Fornari B, Pagannone M (1978) Experimental observation of the upper polariton branch in isotropic crystals. Phys Rev B 17:3047ADSCrossRefGoogle Scholar
  22. Galeener FL, Lucovsky G, Geils RH (1979) Raman and infrared spectra of vitreous As2O3. Phys Rev B 19:4251Google Scholar
  23. Galeener FL, Leadbetter AJ, Stringfellow MW (1983) Comparison of the neutron, Raman, and infrared vibrational spectra of vitreous SiO2, GeO2, and BeF2. Phys Rev B 27:1052ADSCrossRefGoogle Scholar
  24. Geurts J, Gnoth D, Finders J, Kohl A, Heime K (1995) Interfaces of InGaAs/InP multi quantum wells studied by Raman spectroscopy. Phys Status Solidi (a) 152:211ADSCrossRefGoogle Scholar
  25. Gutman F (1948) The electret. Rev Mod Phys 20:457ADSCrossRefGoogle Scholar
  26. Hamaguchi C, Adachi S, Itoh Y (1978) Resonant Brillouin scattering phenomena in some II–VI compounds. Solid State Electron 21:1585ADSCrossRefGoogle Scholar
  27. Hasegawa T, Hotate K (1999) Measurement of Brillouin gain spectrum distribution along an optical fiber by direct frequency modulation of a laser diode. Proc SPIE 3860:306ADSCrossRefGoogle Scholar
  28. Hass M (1967) Lattice reflection. In: Willardson RK, Beer AC (eds) Semiconductors and semimetals, vol 3. Academic Press, New York, p 3Google Scholar
  29. Hayes W, Loudon R (1978) Scattering of light by crystals. Wiley, New YorkGoogle Scholar
  30. Henry CH, Hopfield JJ (1965) Raman scattering by polaritons. Phys Rev Lett 15:964ADSCrossRefGoogle Scholar
  31. Jackson JD (1999) Classical electrodynamis, 2nd edn. Wiley, New YorkGoogle Scholar
  32. Jahne E (1976) Long-wavelength optical phonons in mixed crystals: I. A system of two coupled modes. Phys Status Solidi B 74:275. And: Long-wavelength optical phonons in mixed crystals. II. The persistence of common gaps. Phys Status Solidi B 75:221Google Scholar
  33. Jonscher AK (1983) Dielectric relaxation in solids. Chelsea Dielectric Press, LondonGoogle Scholar
  34. Jusserand B, Paquet D, Kervarec J, Regreny A (1984) Raman scattering study of acoustical and optical folded modes in GaAs/GaAlAs superlattices. J Physique Colloq 45:145Google Scholar
  35. Jusserand B, Alexandre F, Paquet D, Le Roux G (1985) Raman scattering characterization of interface broadening in GaAs/ AlAs short period superlattices grown by molecular beam epitaxy. Appl Phys Lett 47:301ADSCrossRefGoogle Scholar
  36. Kramers HA (1929) Die Dispersion und Absorption von Röntgenstrahlen. Phys Z 30:522 (The dispersion and absorption of X-rays, in German)zbMATHGoogle Scholar
  37. Kronig R d L (1926) On the theory of dispersion of X-rays. J Opt Soc Am 12:547ADSCrossRefGoogle Scholar
  38. Lifshits E, Pitaevski LP, Landau LD (1985) Electrodynamics of continuous media. Elsevier, AmsterdamGoogle Scholar
  39. Lines ME, Glass AM (1979) Principles and applications of ferroelectrics and related materials. Oxford University Press, LondonGoogle Scholar
  40. Loudon R (1964) The Raman effect in crystals. Adv Phys 13:423ADSCrossRefGoogle Scholar
  41. Lyddane RH, Sachs RG, Teller E (1959) On the polar vibrations of alkali halides. Phys Rev 59:673ADSCrossRefGoogle Scholar
  42. Martin RM, Damen TC (1971) Breakdown of selection rules in resonance Raman scattering. Phys Rev Lett 26:86ADSCrossRefGoogle Scholar
  43. Mitra SS (1969) Infrared and Raman spectra due to lattice vibrations. In: Nudelman S, Mitra MM (eds) Optical properties of solids. Plenum Press, New York, pp 333–451Google Scholar
  44. Mitra SS (1985) Optical properties of nonmetallic solids for photon energies below the fundamental band gap. In: Palik ED (ed) Handbook of optical constants of solids. Academic Press, New York, pp 213–270CrossRefGoogle Scholar
  45. Pandey RN, Sharma TP, Dayal B (1977) Electronic polarisabilities of ions in group III-V crystals. J Phys Chem Solids 38:329ADSCrossRefGoogle Scholar
  46. Pauling L (1927) The theoretical prediction of the physical properties of many-electron atoms and ions. Mole refraction, diamagnetic susceptibility, and extension in space. Proc Roy Soc Lond A 114:181ADSCrossRefGoogle Scholar
  47. Pine AS (1972) Resonance Brillouin scattering in cadmium sulfide. Phys Rev B 5:3003ADSCrossRefGoogle Scholar
  48. Pine AS (1983) Brillouin scattering in semiconductors. In: Cardona M (ed) Light scattering in solids I. Springer, Berlin, pp 253–273CrossRefGoogle Scholar
  49. Poulet H (1955) Sur certaines anomalies de l’effet Raman dans les cristaux. Ann Phys (Paris) 10:908. (On certain anomalies of the Raman effect in crystals, in French)ADSGoogle Scholar
  50. Poulet H, Mathieu JP (1970) Spectres des Vibration et Symétrie des Cristeaux. Gordon & Breach, London (Vibration spectra and symmetry of crystals, in French)Google Scholar
  51. Ruf T (1998) Phonon scattering in semiconductors, quantum wells and superlattices. Springer, BerlinzbMATHGoogle Scholar
  52. Rytov SM (1956) Electromagnetic properties of a finely stratified medium. Sov Phys -JETP 2:466MathSciNetzbMATHGoogle Scholar
  53. Shanker J, Agrawal GG, Dutt N (1986) Electronic polarizabilities and photoelastic behaviour of ionic crystals. Phys Status Solidi B 138:9ADSCrossRefGoogle Scholar
  54. Siegle H, Kaczmarczyk G, Filippidis L, Litvinchuk AP, Hoffmann A, Thomsen C (1997) Zone-boundary phonons in hexagonal and cubic GaN. Phys Rev B 55:7000ADSCrossRefGoogle Scholar
  55. Smith DY (1985) Dispersion theory, sum rules, and their application to the analysis of optical data. In: Palik ED (ed) Handbook of optical constants of solids. Academic Press, New York, pp 35–68CrossRefGoogle Scholar
  56. Spitzer WG, Fan HY (1957) Determination of optical constants and carrier effective mass of semiconductors. Phys Rev 106:882ADSCrossRefGoogle Scholar
  57. Stern F (1963) Elementary theory of the optical properties of solids. In: Seitz F, Turnbull D (eds) Solid state physics, vol 15. Academic Press, New York, p 299Google Scholar
  58. Szigeti B (1949) Polarizability and dielectric constant of ionic crystals. Trans Faraday Soc 45:155CrossRefGoogle Scholar
  59. Ulbrich RG, Weisbuch C (1978) Resonant Brillouin scattering in semiconductors. In: Treusch J (ed) Festkörperprobleme/Adv Solid State Phys 18:217. Vieweg, BraunschweigGoogle Scholar
  60. Weinstein BA, Cardona M (1973) Resonant first- and second-order Raman scattering in GaP. Phys Rev B 8:2795ADSCrossRefGoogle Scholar
  61. Windl W, Karch K, Pavone P, Schütt O, Strauch D (1995) Full ab initio calculation of second-order Raman spectra of semiconductors. Int J Quantum Chem 56:787CrossRefGoogle Scholar
  62. Wynne JJ (1974) Spectroscopy of third-order optical nonlinear susceptibilities I. Comments Solid State Phys 6:31Google Scholar
  63. Yu PY (1979) Resonant Brillouin scattering of exciton polaritons. Comments Solid State Phys 9:37Google Scholar
  64. Yu PY, Cardona M (1999) Fundamentals of semiconductors: physics and materials properties, 2nd edn. Springer, BerlinCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.NaplesUSA
  2. 2.Institut für Festkörperphysik, EW5-1Technische Universität BerlinBerlinGermany

Personalised recommendations