Properties and Growth of Semiconductors

  • Karl W. Böer
  • Udo W. PohlEmail author
Living reference work entry

Later version available View entry history



Semiconductor physics and devices have emerged from early studies on the conductivity of metal sulfides in the nineteenth century and experienced a strong progress since the middle of the twentieth century. This introductive chapter briefly highlights a couple of historic milestones and illustrates some general properties of semiconductors. Then the fabrication of semiconductors is described, pointing out the driving force of crystal growth, thermodynamics, and kinetics of nucleation and the occurrence of different growth modes. Various methods for growing bulk single crystals from the liquid and the vapor phase are introduced, and the techniques of liquid-phase epitaxy, molecular-beam epitaxy, and metalorganic vapor-phase epitaxy for the fabrication of thin layers and sharp interfaces are pointed out.


Bridgman growth Crystal growth Czochralski growth Driving force of growth Epitaxy General properties of semiconductors Growth kinetics Growth modes Nucleation Liquid-phase epitaxy Metalorganic vapor-phase epitaxy Molecular-beam epitaxy Nucleation Semiconductor history Supersaturation 


  1. Adams WG, Day RE (1876) The action of light on selenium. Proc R Soc (Lond) 25:113CrossRefGoogle Scholar
  2. Arthur JR Jr (1968) Interaction of Ga and As2 molecular beams with GaAs surfaces. J Appl Phys 39:4032ADSCrossRefGoogle Scholar
  3. Asahi T, Kainosho K, Kohiro K, Noda A, Sato K, Oda O (2003) Chapter 15: Growth of III-V and II-VI single crystals. In: Scheel HJ, Fukuda T (eds) Crystal growth technology. Wiley, ChichesterGoogle Scholar
  4. Astles MG (1990) Liquid-phase epitaxial growth of III-V compound semiconductor materials and their device applications. Adam Hilger, BristolGoogle Scholar
  5. Ayers JE (2007) Heteroepitaxy of semiconductors: theory, growth, and characterization. CRC, Boca RatonCrossRefGoogle Scholar
  6. Bell Labs (1947) see: Bo Lojek (2007) History of semiconductor engineering. Springer, BerlinGoogle Scholar
  7. Bergmann L (1931) Über eine neue Selen-Sperrschicht Photozelle. Phys Z 32:286 (On novel selenium-junction photo cells, in German)Google Scholar
  8. Bergmann L (1934) Phys Z 35:450MathSciNetGoogle Scholar
  9. Braun F (1874) Über die Stromleitung durch Schwefelmetalle. Ann Phys Chem 153:556 (On the current conduction in sulfur metals, in German)Google Scholar
  10. Brice JC (1986) Crystal growth processes. Halstead Press, New YorkGoogle Scholar
  11. Bridgman PW (1923) The compressibility of thirty metals as a function of pressure and temperature. Proc Am Acad Arts Sci (Boston) 58:165; Ibid. 60:303(1925)Google Scholar
  12. Bromme T (1851) Atlas der Physik der Welt. Krais & Hoffmann, Stuttgart (Physics atlas of the world, in German)Google Scholar
  13. Buckley HE (1951) Crystal growth. Wiley, New YorkGoogle Scholar
  14. Capper P, Mauk M (2007) Liquid phase epitaxy of electronic, optical and optoelectronic materials. Wiley, ChichesterCrossRefGoogle Scholar
  15. Cho AY (1971) Film deposition by molecular-beam techniques. J Vac Sci Technol 8:S31ADSCrossRefGoogle Scholar
  16. Czochralski J (1918) Ein neues Verfahren zur Messung der Kristallisationsgeschwindigkeit der Metalle. Z Phys Chemie 92:219 (New method for measuring the crystallization speed of metals, in German)Google Scholar
  17. Dhanaraj G, Byrappa K, Prasad V, Dudley M (eds) (2010) Springer handbook of crystal growth. Springer, New YorkGoogle Scholar
  18. Ebert JJ (1789) Unterweisung in den Anfangsgründen der Naturlehre. Chr. Gottlieb Hertel, Leipzig (Briefing in the elements of natural sciences, in German)Google Scholar
  19. Faraday M (1833) Experimental researches in electricity, series IV. Bernard Quaritch, London, p 433Google Scholar
  20. Gault WA, Monberg EM, Clemans JE (1986) A novel application of the vertical gradient freeze method to the growth of high quality III–V crystals. J Cryst Growth 74:491ADSCrossRefGoogle Scholar
  21. Gibbs JW (1874) On the equilibrium of heterogeneous substances. Trans Conn Acad Arts Sci 3:108–248, 343–524, (1874–1878). Reproduced in both The Scientific Papers (1906), pp 55–353 and The Collected Works of J. Willard Gibbs, vol 2, Longmans, Green and Co., New York (1928), p. 267Google Scholar
  22. Giess EA, Ghez R (1975) Liquid-phase epitaxy. In: Matthews JW (ed) Epitaxial growth part B. Academic Press, New York, pp 183–213CrossRefGoogle Scholar
  23. Goodman CHL (1978) Crystal growth: theory and techniques. Plenum Press, New YorkCrossRefGoogle Scholar
  24. Grondahl LO (1926/1932) see: note on the discovery of the photoelectric effect in a copper-oxide rectifier. Phys Rev 40:635ADSCrossRefGoogle Scholar
  25. Günther KG (1958) Aufdampfschichten aus halbleitenden III-V-Verbindungen. Z Naturforschg 13a:1081 (Vapor deposition of semiconducting III-V compound layers, in German)ADSGoogle Scholar
  26. Hermann MA, Richter W, Sitter H (2004) Epitaxy. Springer, BerlinCrossRefGoogle Scholar
  27. Hittorf JW (1851) Über das elektrische Leitvermögen des Schwefelsilbers und des Halbschwefelkupfers. Ann Phys Lpz 84:1 (On the electric conductivity of sulfur silver and semi-sulfur copper, in German)Google Scholar
  28. Holden A, Morrison PS (1982) Crystals and crystal growing. MIT Press, Cambridge, MAGoogle Scholar
  29. Hurle DTJ (1994) Handbook of crystal growth vol. 2a, bulk crystal growth, basic techniques. North Holland, AmsterdamGoogle Scholar
  30. Jensen KF (1994) Transport phenomena in vapor phase epitaxy reactors. In: Hurle DRT (ed) Handbook of crystal growth. Elsevier, Amsterdam, pp 541–599Google Scholar
  31. Jones AC, O’Brien P (1997) CVD of compound semiconductors. VCH, WeinheimCrossRefGoogle Scholar
  32. Joyce BA, Vvedenski DD, Foxon CT (1994) Growth mechanisms in MBE and CBE of III-V compounds. In: Mahajan S (ed) Handbook on semiconductors. Elsevier, AmsterdamGoogle Scholar
  33. Kloc C, Siegrist T, Pflaum J (2010) Growth of single-crystal organic semiconductors. In: Dhanaraj G, Byrappa K, Prasad V, Dudley M (eds) Springer handbook of crystal growth. Springer, New YorkGoogle Scholar
  34. Königsberger T, Weiss T (1911) Über die thermoelektrischen Effekte (Thermokräfte, Thomsonwärme) und die Wärmeleitung in einigen Elementen und Verbindungen und über die experimentelle Prüfung der Elektronentheorien. Ann Phys 35:1. (On the thermoelectrical effects and heat conductivity in some elements and compounds and on the experimental examination of the electron theory, in German)Google Scholar
  35. Kyropoulos S (1926) Ein Verfahren zur Herstellung großer Kristalle. Z Anorg Allg Chemie 154:308 (A method for the fabrication of large crystals, in German)CrossRefGoogle Scholar
  36. Kyropoulos S (1930) Dielektrizitätskonstanten regulärer Kristalle. Z Phys 63:849 (Dielectric constants of normal crystals, in German)ADSCrossRefGoogle Scholar
  37. Laudise RA (1970) The growth of single crystals. Prentice Hall, Englewood CliffsGoogle Scholar
  38. Manasevit HM, Simpson WI (1968) The use of metal-organics in the preparation of semiconductor materials on insulating substrates: I. Epitaxial III-V gallium compounds. J Electrochem Soc 12:66CGoogle Scholar
  39. Manasevit HM (1972) The use of metalorganics in the preparation of semiconductor materials: Growth on insulating substrates. J Crystal Growth 13/14:306ADSCrossRefGoogle Scholar
  40. Markov IV (2003) Crystal growth for beginners, 2nd edn. World Scientific, SingaporeCrossRefGoogle Scholar
  41. Metz EAP, Miller RC, Mazelsky R (1962) A technique for pulling single crystals of volatile materials. J Appl Phys 33:2016ADSCrossRefGoogle Scholar
  42. Miederer WG, Ziegler, Dötzer R (1962) Verfahren zum tiegelfreien Herstellen von Galliumarsenidstäben aus Galliumalkylen und Arsenverbindungen bei niedrigen Temperaturen. German Patent 1,176,102, filed 25.9.1962; and: Method of crucible-free production of gallium arsenide rods from alkyl galliums and arsenic compounds at low temperatures. US Patent 3,226,270, filed 24.9.1963Google Scholar
  43. Miller RJ, Bachmann CH (1958) Production of cadmium sulfide crystals by coevaporation in a vacuum. J Appl Phys 29:1277ADSCrossRefGoogle Scholar
  44. Mooser E, Pearson WB (1956) The chemical bond in semiconductors. J Electron 1:629Google Scholar
  45. Mountziaris TJ, Jensen KF (1991) Gas-phase and surface reaction mechanisms in MOCVD of GaAs with trimethyl-gallium and arsine. J Electrochem Soc 138:2426CrossRefGoogle Scholar
  46. Ovshinsky SR (1968) Reversible electrical switching phenomena in disordered structures. Phys Rev Lett 21:1450ADSCrossRefGoogle Scholar
  47. Pamplin B (1980) Crystal growth, 2nd edn. Pergamon, New YorkGoogle Scholar
  48. Parker EHC (ed) (1985) The technology and physics of molecular beam epitaxy. Plenum Press, New YorkGoogle Scholar
  49. Pohl UW (2013) Epitaxy of semiconductors. Springer, BerlinCrossRefGoogle Scholar
  50. Queisser HJ (1985) Kristallene Krisen. Piper, München English: The Conquest of the MicrochipGoogle Scholar
  51. Reep DH, Ghandhi SK (1983) Deposition of GaAs epitaxial layers by organometallic CVD. J Electrochem Soc 130:675CrossRefGoogle Scholar
  52. Schuster A (1874) On unilateral conductivity. Philos Mag 48:251CrossRefGoogle Scholar
  53. Seebeck TJ (1822) Magnetische Polarisation der Metalle und Erze durch Temperaturdifferenz. Abhandl Deut Akad Wiss. Berlin, p 265. (Magnetic polarization of metals and ore by temperature difference, in German)Google Scholar
  54. Small MB, Giess EA, Ghez R (1994) Liquid-phase epitaxy. In: Hurle DTJ (ed) Handbook of crystal growth, vol 3. Elsevier, Amsterdam, pp 223–253Google Scholar
  55. Smith W (1873) Effect of light on selenium during the passage of an electric current. Nature 7:303CrossRefGoogle Scholar
  56. Stringfellow GB (1999) Organometallic vapor-phase epitaxy, 2nd edn. Academic Press, New YorkGoogle Scholar
  57. Sze SM, Ng KK (2007) Physics of semiconductor devices, 3rd edn. Wiley, HobokenGoogle Scholar
  58. Venables JA, Spiller GDT, Hanbrücken M (1984) Nucleation and growth of thin films. Rep Prog Phys 47:399ADSCrossRefGoogle Scholar
  59. Verneuil AV (1902) Production artificielle du rubis par fusion (Artificial production of ruby by fusion, in French) C R Acad Sci Paris C 135:791; La synthese du rubis (Synthesis of ruby, in French) Ann Chim et Phys (Paris) 3:20 (1904)Google Scholar
  60. Volmer M (1939) Kinetik der Phasenbildung. Theodor Steinkopf, Dresden (Kinetics of phase formation, in German)Google Scholar
  61. Volmer M, Weber A (1926) Tröpfchenbildung in Dämpfen. Z Phys Chem 119:227 (Formation of droplets in vapor, in German)Google Scholar
  62. Wanklyn BMR (1974) Practical aspects of flux growth by spontaneous nucleation. In: Pamplin BR (ed) Crystal growth, vol 1. Pergamon, Oxford, pp 217–288Google Scholar
  63. Wilson AH (1931) The theory of electronic semi-conductors. Proc R Soc (Lond) Ser A 133:458ADSCrossRefGoogle Scholar
  64. Wulff G (1901) Zur Frage der Geschwindigkeit des Wachstums und der Auflösung der Kristallflächen, Z. Kristallographie 34:449 (On the question of growth velocity and the decomposition of crystal faces, in German)Google Scholar
  65. Young T (1805) An essay on the cohesion of fluids. Phil Trans R Soc Lond 95:65CrossRefGoogle Scholar
  66. Zachariasen WH (1932) The atomic arrangement in glass. J Am Chem Soc 54:3841CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.NaplesUSA
  2. 2.Institut für Festkörperphysik, EW5-1Technische Universität BerlinBerlinGermany

Personalised recommendations