Skip to main content

Characterization of Porous Silicon by Infrared Spectroscopy

  • Reference work entry
  • First Online:

Abstract

The surface of electrochemically etched porous silicon is passivated with hydrogen just after preparation. The surface is gradually oxidized under ambient atmosphere, and the rate depends upon the ambient condition. The chemical and physical changes affect the properties of porous silicon-based devices. Proper understanding of the surface is important, and infrared (IR) spectroscopy is an effective and easy tool for monitoring and/or characterizing the surface state. Silicon is almost transparent to IR light, and hence the convenient transmission measurement is applicable to films and membranes of porous silicon. The measurement technique is first described, and then assignments of absorption bands in the spectra are given for the hydrogen-terminated and oxidized surface. The prevention of oxidation and the functionalization of porous silicon surface are important for many practical uses, where IR measurements can be used to monitor the surface. In addition, methods other than the transmission mode are briefly introduced.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   399.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Borghesi A, Guizzetti G, Sassella A et al (1994) Induction-model analysis of Si-H stretching mode in porous silicon. Solid State Commun 89:615–618

    Article  Google Scholar 

  • Boukherroub R, Wojtyk J, Wayner D et al (2002) Thermal hydrosilylation of undecylenic acid with porous silicon. J Electrochem Soc 149:H59–H63

    Article  Google Scholar 

  • Buriak J (2002) Organometallic chemistry on silicon and germanium surfaces. Chem Rev 102:1271–1308

    Article  Google Scholar 

  • Burrows V, Chabal Y, Higashi G et al (1988) Infrared-spectroscopy of Si(111) surfaces after HF treatment – hydrogen termination and surface-morphology. Appl Phys Lett 53:998–1000

    Article  Google Scholar 

  • Canaria C, Lees I, Wun A et al (2002) Characterization of the carbon-silicon stretch in methylated porous silicon – observation of an anomalous isotope shift in the FTIR spectrum. Inorg Chem Commun 5:560–564

    Article  Google Scholar 

  • Chabal Y, Raghavachari K (1984) Surface infrared study of Si(100)-(2x1)H. Phys Rev Lett 53:282–285

    Article  Google Scholar 

  • Chazalviel J, da Fonseca C, Ozanam F (1998) In situ infrared study of the oscillating anodic dissolution of silicon in fluoride electrolytes. J Electrochem Soc 145:964–973

    Article  Google Scholar 

  • Gerischer H, Allongue P, Kieling V (1993) The mechanism of the anodic-oxidation of silicon in acidic fluoride solutions revisited. Ber Bunsen-Ges Phys Chem 97:753–756

    Article  Google Scholar 

  • Günzler H, Gremlich H-U (2002) IR spectroscopy: an introduction. Wiley-VCH, Weinheim

    Google Scholar 

  • Gupta P, Colvin V, George S (1988) Hydrogen desorption-kinetics from monohydride and dihydride species on silicon surfaces. Phys Rev B 37:8234–8243

    Article  Google Scholar 

  • Gupta P, Dillon A, Bracker A et al (1991) FTIR studies of H2O and D2O decomposition on porous silicon surfaces. Surf Sci 245:360–372

    Article  Google Scholar 

  • Herino R, Bomchil G, Barla K et al (1987) Porosity and pore-size distributions of porous silicon layers. J Electrochem Soc 134:1994–2000

    Article  Google Scholar 

  • Ito T, Yasumatsu T, Watabe H et al (1990) Effects of hydrogen-atoms on passivation and growth of microcrystalline Si. MRS Symp Proc 164:205–210

    Article  Google Scholar 

  • James TD, Parish G, Musca CA et al (2010) N2-Based thermal passivation of porous silicon to achieve long-term optical stability. Electrochem Solid-State Lett 13:H428–H431

    Article  Google Scholar 

  • Johnson F, Loudon R (1964) Critical-point analysis of phonon spectra of diamond silicon and germanium. Proc R Soc Lond A 281:274–290

    Article  Google Scholar 

  • Kato Y, Ito T, Hiraki A (1988) Initial oxidation process of anodized porous silicon with hydrogen-atoms chemisorbed on the inner surface. Jpn J Appl Phys 27:L1406–L1409

    Article  Google Scholar 

  • Kimura Y, Kondo Y, Niwano M (2001) Initial stages of porous Si formation on Si surfaces investigated by infrared spectroscopy. Appl Surf Sci 175:157–162

    Article  Google Scholar 

  • Kimura Y, Nemoto J, Shinohara M et al (2003) In-situ observation of chemical states of a Si electrode surface during a galvanostatic oscillation in fluoride electrolytes using infrared absorption spectroscopy. Phys Status Solidi A 197:577–581

    Article  Google Scholar 

  • Knights J, Lucovsky G, Nemanich R (1978) Hydrogen-bonding in silicon-hydrogen alloys. Phil Mag B 37:467–475

    Article  Google Scholar 

  • Lucovsky G (1979) Chemical effects on the frequencies of Si-H vibrations in amorphous solids. Solid State Commun 29:571–576

    Article  Google Scholar 

  • Lucovsky G, Nemanich R, Knights J (1979) Structural interpretation of the vibrational-spectra of a-Si:H alloys. Phys Rev B 19:2064–2073

    Article  Google Scholar 

  • Lucovsky G, Yang J, Chao S et al (1983) Oxygen-bonding environments in glow-discharge deposited amorphous silicon-hydrogen alloy-films. Phys Rev B 28:3225–3233

    Article  Google Scholar 

  • Ogata Y, Niki H, Sakka T et al (1995a) Hydrogen in porous silicon - vibrational analysis of SiHx species. J Electrochem Soc 142:195–201

    Article  Google Scholar 

  • Ogata Y, Niki H, Sakka T et al (1995b) Oxidation of porous silicon under water-vapor environment. J Electrochem Soc 142:1595–1601

    Article  Google Scholar 

  • Ogata Y, Kato F, Tsuboi T et al (1998) Changes in the environment of hydrogen in porous silicon with thermal annealing. J Electrochem Soc 145:2439–2444

    Article  Google Scholar 

  • Rao A, Ozanam F, Chazalviel J (1991) Insitu Fourier-transform electromodulated infrared study of porous silicon formation - evidence for solvent effects on the vibrational linewidths. J Electrochem Soc 138:153–159

    Article  Google Scholar 

  • Sailor MJ (2011) Porous silicon in practice. Wiley-VCH, Weinheim

    Book  Google Scholar 

  • Salonen J, Laine E, Niinisto L (2002) Thermal carbonization of porous silicon surface by acetylene. J Appl Phys 91:456–461

    Article  Google Scholar 

  • Searson P, Zhang X (1990) The anodic-dissolution of silicon in HF solutions. J Electrochem Soc 137:2539–2546

    Article  Google Scholar 

  • Settle F (1997) Handbook of instrumental techniques for analytical chemistry. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Stuart BH (2004) Infrared spectroscopy: fundamentals and applications. Wiley, Hoboken

    Google Scholar 

  • Tolstoy VP, Chernyshova I, Skryshevsky VA (2003) Handbook of infrared spectroscopy of ultra thin films. Wiley-VCH, New York

    Book  Google Scholar 

  • Trucks G, Raghavachari K, Higashi G et al (1990) Mechanism of HF etching of silicon surfaces – a theoretical understanding of hydrogen passivation. Phys Rev Lett 65:504–507

    Article  Google Scholar 

  • Unagami T (1980a) Formation mechanism of porous silicon layer by anodization in HF solution. J Electrochem Soc 127:476–483

    Article  Google Scholar 

  • Unagami T (1980b) Oxidation of porous silicon and properties of its oxide film. Jpn J Appl Phys 19:231–241

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yukio H. Ogata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this entry

Cite this entry

Ogata, Y.H. (2014). Characterization of Porous Silicon by Infrared Spectroscopy. In: Canham, L. (eds) Handbook of Porous Silicon. Springer, Cham. https://doi.org/10.1007/978-3-319-05744-6_48

Download citation

Publish with us

Policies and ethics