Skip to main content

Tunable Properties of Porous Silicon

  • Reference work entry
  • First Online:

Abstract

Data and literature are collated that emphasize the high tunability of porous silicon properties, either via manipulation of its structural parameters, via the chemistry of the large internal surface area, or via impregnation of other materials. An overview of quantitative data on more than 30 properties is tabulated and compared to those of nonporous silicon. Where available, the range of values reported to date is given. The properties showing the widest tunability to date include the visible photoluminescence (optical bandgap), mechanical stiffness, thermal conductivity, optical refractive index, electrical resistivity, biodegradability kinetics, optical reflectivity, and surface wettability.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   399.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agarwal V, del Rio JA (2003) Tailoring the photonic bandgap of a porous silicon dielectric mirror. Appl Phys Lett 82:1512–1514

    Article  Google Scholar 

  • Bonanno LM, Deloiuse LA (2010) Tunable detection sensitivity of opiates in urine via a label free porous silicon competitive inhibition immunosensor. Anal Chem 82(2):714

    Article  Google Scholar 

  • Canham LT (1997) Properties of porous silicon, vol 18, EMIS datareview series. IEE Press, London

    Google Scholar 

  • Cao M, Song X, Zhai J, Wang J, Wang Y (2006) Fabrication of highly antireflective silicon surfaces with superhydrophobicity. J Phys Chem B 110(6):13072–13075

    Article  Google Scholar 

  • Choi J, Wang NS, Reipa V (2007) Photoassisted tuning of silicon nanocrystal photoluminescence. Langmuir 23:3388–3394

    Article  Google Scholar 

  • Di Francia G, Quercia L, Rea I, Maddalena P, Lettieri S (2005) Nanostructure reactivity: confinement energy and charge transfer in porous silicon. Sens Actuator B111–112:117–124

    Article  Google Scholar 

  • Fritzsche H (1989) Properties of amorphous silicon, vol 1, 2nd edn, EMIS datareview series. IEE Press, London

    Google Scholar 

  • Garin M, Trifonov T, Rodriguez A, Alcubilla R, Marquier F, Arnold C, Greffet JJ (2008) Improving selective thermal emission properties of three dimensional macroporous silicon through porosity tuning. Appl Phys Lett 93:081913

    Article  Google Scholar 

  • Godin B, Gu J, Serda RE, Bhavane R, Tasciotti E, Chiappini C, Liu X, Tanaka T, Decuzzi P, Ferrari M (2010) Tailoring the degradation kinetics of mesoporous silicon structures through PEGylation. J Biomed Mater Res A 94(4):1236–1243

    Google Scholar 

  • Granitzer P, Rumpf K (2010) Porous silicon – a versatile host material. Materials 3:943–998

    Article  Google Scholar 

  • Hermansson K, Lindberg U, Hok B, Palmskog G (1991) Wetting properties of silicon surfaces. In: IEEE proceedings of the international conference transducers 24–27 Jun 1991, San Francisco, pp 193–196

    Google Scholar 

  • Hou H, Nieto A, Ma F, Freeman WR, Sailor MJ, Cheng L (2014) Tunable sustained intravitreal drug delivery system for daunorubicin using oxidized porous silicon. J Control Release 178:46–54

    Article  Google Scholar 

  • Hull R (1999) Properties of crystalline silicon, vol 20, EMIS datareview series. IEE Press, London

    Google Scholar 

  • Ilyas S, Gal M (2006) Gradient refractive index planar microlens in Si using porous silicon. Appl Phys Lett 89:211123

    Article  Google Scholar 

  • Jiang L, Li S, Wang J, Yang L, Sun Q, Li Z (2014) Surface wettability of oxygen plasma treated porous silicon. J Nanomater:Article ID 526149, 6 pages

    Google Scholar 

  • Kaasalainen M, Makila E, Riikonen J, Kovalainen M, Jarvinen K, Herzig KH, Lehto VP, Salonen J (2012) Effect of isotonic solutions and peptide adsorption on zeta potential of porous silicon nanoparticle drug delivery formulations. Int J Pharm 431:230–236

    Article  Google Scholar 

  • Kumar P, Hofmann T, Huber P, Scheib P, Lemmens P (2008) Tuning the pore wall morphology of mesoporous silicon from branchy to smooth tubular by chemical treatment. J Appl Phys 103:024303

    Article  Google Scholar 

  • Lammel G, Schwiezer S, Schiesser S, Renaud P (2002) Tunable optical filter of porous silicon as a key component for a MEMS spectrometer. J Microelectromech Syst 11(6):815–828

    Article  Google Scholar 

  • Makila E, Bimbo LM, Kaasalainen M, Herranz B, Airaksinen AJ, Heinonen M, Kukk E, Hirvonen J, Santos HA, Salonen J (2012) Amine modification of thermally carbonized porous silicon with silane coupling chemistry. Langmuir 28(39):14045–14054

    Article  Google Scholar 

  • Martin-Palma RJ, Pascual L, Herrero P, Martinez-Duart JM (2002) Direct determination of grain sizes, lattice parameters and mismatch of porous silicon. Appl Phys Lett 81(1):25–27

    Article  Google Scholar 

  • Murzina TV, Scyhev FY, Kolymchek IA, Aktsipetrov OA (2007) Tunable ferroelectric photonic crystals based on porous silicon templates infiltrated by sodium nitrite. Appl Phys Lett 90:161120

    Article  Google Scholar 

  • Perez KS, Estevez OJ, Mendez-Blas A, Arriaga J, Palestino G, Mora-Ramos E (2012) Tunable resonance transmission modes in hybrid heterostructures based on porous silicon. Nanoscale Res Lett 7:392

    Article  Google Scholar 

  • Plummer A, Kuznetsov V, Joyner T, Shapter J, Voelcker NH (2011) The burning rate of energetic films of nanostructured porous silicon. Small 7(23):3392–3398

    Article  Google Scholar 

  • Ramachandra Rao R, Roopa HN, Kannan TS (1999) The characterisation of aqueous silicon slips. J Eur Ceram Soc 19:2763–2771

    Article  Google Scholar 

  • Ressine A, Finnskog D, Marko-Varga G, Laurell T (2008) Superhydrophobic properties of nanostructured-microstructured porous silicon for improved surface-based bioanalysis. Nanobiotechnology 4:18–27

    Article  Google Scholar 

  • Yu TV, Dittrich T, Sieber I, Rappich J, Kamenev BV, Kaskarov PK (2000) Laser induced melting of porous silicon. Phys Stat Solidi 182:325–330

    Article  Google Scholar 

  • Tzur-Balter A, Gilert A, Massad-Ivanir N, Segal E (2013) Engineering porous silicon nanostructures as tunable carriers for mitoxantrone dihydrochloride. Acta Biomater 9:6208–6217

    Article  Google Scholar 

  • Weiss SM, Fauchet PM (2003) Electrically tunable porous silicon active mirrors. Phys Stat Solidi 197:556–560

    Article  Google Scholar 

  • Wolkin MV, Jorne J, Fauchet PM, Allan G, Delerue C (1999) Electronic states and photoluminescence in porous silicon quantum dots: the role of oxygen. Phys Rev Lett 82(1):197

    Article  Google Scholar 

  • Zhang Q, Gu M (2005) Rheological properties and gelcasting of concentrated aqueous silicon suspension. Mater Sci Eng A339:351–357

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leigh Canham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this entry

Cite this entry

Canham, L. (2014). Tunable Properties of Porous Silicon. In: Canham, L. (eds) Handbook of Porous Silicon. Springer, Cham. https://doi.org/10.1007/978-3-319-05744-6_19

Download citation

Publish with us

Policies and ethics